BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21306127)

  • 21. A versatile and highly sensitive probe for Hg(II), Pb(II) and Cd(II) detection individually and totally in water samples.
    Zhou Y; Tian XL; Li YS; Zhang YY; Yang L; Zhang JH; Wang XR; Lu SY; Ren HL; Liu ZS
    Biosens Bioelectron; 2011 Dec; 30(1):310-4. PubMed ID: 21975341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving Pb2+ detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles.
    Kim JH; Han SH; Chung BH
    Biosens Bioelectron; 2011 Jan; 26(5):2125-9. PubMed ID: 20888751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature.
    Liu D; Qu W; Chen W; Zhang W; Wang Z; Jiang X
    Anal Chem; 2010 Dec; 82(23):9606-10. PubMed ID: 21069969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free detection of sub-nanomolar lead(II) ions in aqueous solution using a metal-based luminescent switch-on probe.
    He HZ; Leung KH; Yang H; Chan DS; Leung CH; Zhou J; Bourdoncle A; Mergny JL; Ma DL
    Biosens Bioelectron; 2013 Mar; 41():871-4. PubMed ID: 23040875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles.
    Driskell JD; Jones CA; Tompkins SM; Tripp RA
    Analyst; 2011 Aug; 136(15):3083-90. PubMed ID: 21666913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An enhanced ELISA based on modified colloidal gold nanoparticles for the detection of Pb(II).
    Zhou Y; Tian XL; Li YS; Pan FG; Zhang YY; Zhang JH; Yang L; Wang XR; Ren HL; Lu SY; Li ZH; Chen QJ; Liu ZS; Liu JQ
    Biosens Bioelectron; 2011 Apr; 26(8):3700-4. PubMed ID: 21371875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles.
    Liu J; Lu Y
    J Am Chem Soc; 2003 Jun; 125(22):6642-3. PubMed ID: 12769568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes.
    Chen Z; Wang Z; Chen J; Wang S; Huang X
    Analyst; 2012 Jul; 137(13):3132-7. PubMed ID: 22624147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles.
    Ratnarathorn N; Chailapakul O; Dungchai W
    Talanta; 2015 Jan; 132():613-8. PubMed ID: 25476352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An advanced investigation on a new algal sensor determining Pb(II) ions from aqueous media.
    Yüce M; Nazır H; Dönmez G
    Biosens Bioelectron; 2010 Oct; 26(2):321-6. PubMed ID: 20829025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle.
    Dasary SS; Senapati D; Singh AK; Anjaneyulu Y; Yu H; Ray PC
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3455-60. PubMed ID: 21077646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Label-free Pb(II) whispering gallery mode sensing using self-assembled glutathione-modified gold nanoparticles on an optical microcavity.
    Panich S; Wilson KA; Nuttall P; Wood CK; Albrecht T; Edel JB
    Anal Chem; 2014 Jul; 86(13):6299-306. PubMed ID: 24871358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of gold nanoparticles in a simple colorimetric and ultrasensitive dynamic light scattering assay: selective detection of arsenic in groundwater.
    Kalluri JR; Arbneshi T; Khan SA; Neely A; Candice P; Varisli B; Washington M; McAfee S; Robinson B; Banerjee S; Singh AK; Senapati D; Ray PC
    Angew Chem Int Ed Engl; 2009; 48(51):9668-71. PubMed ID: 19937875
    [No Abstract]   [Full Text] [Related]  

  • 34. Colorimetric assay of lead ions in biological samples using a nanogold-based membrane.
    Lee YF; Huang CC
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2747-54. PubMed ID: 21699213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluminescence system.
    Qi Y; Li B; Zhang Z
    Biosens Bioelectron; 2009 Aug; 24(12):3581-6. PubMed ID: 19515550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.
    Lin JH; Tseng WL
    Talanta; 2015 Jan; 132():44-51. PubMed ID: 25476277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points.
    Daniel WL; Han MS; Lee JS; Mirkin CA
    J Am Chem Soc; 2009 May; 131(18):6362-3. PubMed ID: 19368386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenylboronic acid functionalized gold nanoparticles for highly sensitive detection of Staphylococcus aureus.
    Wang J; Gao J; Liu D; Han D; Wang Z
    Nanoscale; 2012 Jan; 4(2):451-4. PubMed ID: 22159893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time colorimetric detection of target DNA using isothermal target and signaling probe amplification and gold nanoparticle cross-linking assay.
    Jung C; Chung JW; Kim UO; Kim MH; Park HG
    Biosens Bioelectron; 2011 Jan; 26(5):1953-8. PubMed ID: 20970981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range.
    Li CM; Zhen SJ; Wang J; Li YF; Huang CZ
    Biosens Bioelectron; 2013 May; 43():366-71. PubMed ID: 23356994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.