BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21306149)

  • 1. Trapping a labile adduct formed between an ortho-quinone methide and 2'-deoxycytidine.
    McCrane MP; Weinert EE; Lin Y; Mazzola EP; Lam YF; Scholl PF; Rokita SE
    Org Lett; 2011 Mar; 13(5):1186-9. PubMed ID: 21306149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative quenching of quinone methide adducts reveals transient products of reversible alkylation in duplex DNA.
    McCrane MP; Hutchinson MA; Ad O; Rokita SE
    Chem Res Toxicol; 2014 Jul; 27(7):1282-93. PubMed ID: 24896651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent evolution of adducts formed between deoxynucleosides and a model quinone methide.
    Weinert EE; Frankenfield KN; Rokita SE
    Chem Res Toxicol; 2005 Sep; 18(9):1364-70. PubMed ID: 16167827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol.
    Lewis MA; Yoerg DG; Bolton JL; Thompson JA
    Chem Res Toxicol; 1996 Dec; 9(8):1368-74. PubMed ID: 8951242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective N1-alkylation of 2'-deoxyguanosine with a quinolinyl quinone methide.
    Zhou Q; Xu T; Mangrum JB
    Chem Res Toxicol; 2007 Aug; 20(8):1069-74. PubMed ID: 17630703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugation of a hairpin pyrrole-imidazole polyamide to a quinone methide for control of DNA cross-linking.
    Kumar D; Veldhuyzen WF; Zhou Q; Rokita SE
    Bioconjug Chem; 2004; 15(4):915-22. PubMed ID: 15264882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Alkylation of C-Rich Bulge Motifs in Nucleic Acids by Quinone Methide Derivatives.
    Lönnberg T; Hutchinson M; Rokita S
    Chemistry; 2015 Sep; 21(37):13127-36. PubMed ID: 26220692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transient product of DNA alkylation can be stabilized by binding localization.
    Veldhuyzen WF; Pande P; Rokita SE
    J Am Chem Soc; 2003 Nov; 125(46):14005-13. PubMed ID: 14611237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-catalysed asymmetric tandem spiro-cyclization using dioxygen in air as the hydrogen acceptor.
    Oguma T; Katsuki T
    Chem Commun (Camb); 2014 May; 50(39):5053-6. PubMed ID: 24715032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity of purine alkylation by a quinone methide. Kinetic or thermodynamic control?
    Freccero M; Gandolfi R; Sarzi-Amadè M
    J Org Chem; 2003 Aug; 68(16):6411-23. PubMed ID: 12895079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic approach to nomofungin/communesin B.
    Crawley SL; Funk RL
    Org Lett; 2003 Sep; 5(18):3169-71. PubMed ID: 12943379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactivation of the selective estrogen receptor modulator acolbifene to quinone methides.
    Liu J; Liu H; van Breemen RB; Thatcher GR; Bolton JL
    Chem Res Toxicol; 2005 Feb; 18(2):174-82. PubMed ID: 15720121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis.
    Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL
    Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migratory ability of quinone methide-generating acridine conjugates in DNA.
    Deeyaa BD; Rokita SE
    Org Biomol Chem; 2020 Feb; 18(8):1671-1678. PubMed ID: 32051993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A formal [4 + 4] complementary ambiphile pairing reaction: a new cyclization pathway for ortho-quinone methides.
    Samarakoon TB; Hur MY; Kurtz RD; Hanson PR
    Org Lett; 2010 May; 12(10):2182-5. PubMed ID: 20394415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total syntheses of ent-heliespirones A and C.
    Bai WJ; Green JC; Pettus TR
    J Org Chem; 2012 Jan; 77(1):379-87. PubMed ID: 22074003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol.
    Bolton JL; Comeau E; Vukomanovic V
    Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New ortho-quinone methide formation: application to three-component coupling of isocyanides, aldehydes and phenols.
    El Kaïm L; Grimaud L; Oble J
    Org Biomol Chem; 2006 Sep; 4(18):3410-3. PubMed ID: 17036133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular basis of elansolid biosynthesis: evidence for an unprecedented quinone methide initiated intramolecular Diels-Alder cycloaddition/macrolactonization.
    Dehn R; Katsuyama Y; Weber A; Gerth K; Jansen R; Steinmetz H; Höfle G; Müller R; Kirschning A
    Angew Chem Int Ed Engl; 2011 Apr; 50(17):3882-7. PubMed ID: 21472917
    [No Abstract]   [Full Text] [Related]  

  • 20. Trapping phosphodiester-quinone methide adducts through in situ lactonization.
    Zhou Q; Turnbull KD
    J Org Chem; 2000 Apr; 65(7):2022-9. PubMed ID: 10774022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.