These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21306153)

  • 1. Nanonet-based hematite heteronanostructures for efficient solar water splitting.
    Lin Y; Zhou S; Sheehan SW; Wang D
    J Am Chem Soc; 2011 Mar; 133(8):2398-401. PubMed ID: 21306153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the growth mechanism of titanium disilicide nanonets.
    Zhou S; Xie J; Wang D
    ACS Nano; 2011 May; 5(5):4205-10. PubMed ID: 21506560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.
    Zhou S; Simpson ZI; Yang X; Wang D
    ACS Nano; 2012 Sep; 6(9):8114-9. PubMed ID: 22917056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water oxidation at hematite photoelectrodes: the role of surface states.
    Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J
    J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime.
    Zhou S; Yang X; Lin Y; Xie J; Wang D
    ACS Nano; 2012 Jan; 6(1):919-24. PubMed ID: 22176699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices.
    Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N
    ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.
    Sivula K; Zboril R; Le Formal F; Robert R; Weidenkaff A; Tucek J; Frydrych J; Grätzel M
    J Am Chem Soc; 2010 Jun; 132(21):7436-44. PubMed ID: 20443599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast carrier dynamics in nanostructures for solar fuels.
    Baxter JB; Richter C; Schmuttenmaer CA
    Annu Rev Phys Chem; 2014; 65():423-47. PubMed ID: 24423371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Si/TiSi2 Heteronanostructures as high-capacity anode material for li ion batteries.
    Zhou S; Liu X; Wang D
    Nano Lett; 2010 Mar; 10(3):860-3. PubMed ID: 20148568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer.
    Hisatomi T; Dotan H; Stefik M; Sivula K; Rothschild A; Grätzel M; Mathews N
    Adv Mater; 2012 May; 24(20):2699-702. PubMed ID: 22508522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous TiO(2): comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction.
    Hartmann P; Lee DK; Smarsly BM; Janek J
    ACS Nano; 2010 Jun; 4(6):3147-54. PubMed ID: 20486697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction.
    Zhao YM; Li YH; Ma RZ; Roe MJ; McCartney DG; Zhu YQ
    Small; 2006 Mar; 2(3):422-7. PubMed ID: 17193062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of the film thickness of nanostructured alpha-Fe2O3 on water photooxidation.
    Souza FL; Lopes KP; Longo E; Leite ER
    Phys Chem Chem Phys; 2009 Feb; 11(8):1215-9. PubMed ID: 19209365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.