These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21306352)

  • 41. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.
    Blanche P; Proust-Lima C; Loubère L; Berr C; Dartigues JF; Jacqmin-Gadda H
    Biometrics; 2015 Mar; 71(1):102-113. PubMed ID: 25311240
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model.
    Suresh K; Taylor JMG; Spratt DE; Daignault S; Tsodikov A
    Biom J; 2017 Nov; 59(6):1277-1300. PubMed ID: 28508545
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of joint modeling of longitudinal zero-inflated power series and zero-inflated time to event data.
    Zeinali Najafabadi M; Bahrami Samani E; Ganjali M
    J Biopharm Stat; 2020 Sep; 30(5):854-872. PubMed ID: 32419619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Joint analysis of longitudinal and survival AIDS data with a spatial fraction of long-term survivors: A Bayesian approach.
    Martins R; Silva GL; Andreozzi V
    Biom J; 2017 Nov; 59(6):1166-1183. PubMed ID: 28464317
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Joint longitudinal and time-to-event cure models for the assessment of being cured.
    Barbieri A; Legrand C
    Stat Methods Med Res; 2020 Apr; 29(4):1256-1270. PubMed ID: 31213153
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flexible Bayesian additive joint models with an application to type 1 diabetes research.
    Köhler M; Umlauf N; Beyerlein A; Winkler C; Ziegler AG; Greven S
    Biom J; 2017 Nov; 59(6):1144-1165. PubMed ID: 28796339
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A tutorial on dynamic risk prediction of a binary outcome based on a longitudinal biomarker.
    Dandis R; Teerenstra S; Massuger L; Sweep F; Eysbouts Y; IntHout J
    Biom J; 2020 Mar; 62(2):398-413. PubMed ID: 31777998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Random effects models for HIV marker data: practical approaches with currently available software.
    Raab GM; Parpia T
    Stat Methods Med Res; 2001 Apr; 10(2):101-16. PubMed ID: 11338333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes.
    Hickey GL; Philipson P; Jorgensen A; Kolamunnage-Dona R
    BMC Med Res Methodol; 2018 Jun; 18(1):50. PubMed ID: 29879902
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-stage model for multivariate longitudinal and survival data with application to nephrology research.
    Guler I; Faes C; Cadarso-Suárez C; Teixeira L; Rodrigues A; Mendonça D
    Biom J; 2017 Nov; 59(6):1204-1220. PubMed ID: 29139606
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Joint modeling of longitudinal data and discrete-time survival outcome.
    Qiu F; Stein CM; Elston RC;
    Stat Methods Med Res; 2016 Aug; 25(4):1512-26. PubMed ID: 23709103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic prediction: A challenge for biostatisticians, but greatly needed by patients, physicians and the public.
    Schumacher M; Hieke S; Ihorst G; Engelhardt M
    Biom J; 2020 May; 62(3):822-835. PubMed ID: 30908745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Joint modeling of cross-sectional health outcomes and longitudinal predictors via mixtures of means and variances.
    Jiang B; Elliott MR; Sammel MD; Wang N
    Biometrics; 2015 Jun; 71(2):487-97. PubMed ID: 25652674
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Landmarking 2.0: Bridging the gap between joint models and landmarking.
    Putter H; van Houwelingen HC
    Stat Med; 2022 May; 41(11):1901-1917. PubMed ID: 35098578
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of 2-stage meta-analysis methods for joint longitudinal and time-to-event data through simulation and real data application.
    Sudell M; Tudur Smith C; Gueyffier F; Kolamunnage-Dona R
    Stat Med; 2018 Apr; 37(8):1227-1244. PubMed ID: 29250814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Joint Model Approach for Longitudinal Data with no Time-Zero and Time-To-Event with Competing Risks.
    Kim S; Buhule OD; Albert PS
    Stat Biosci; 2019 Jul; 11(2):449-464. PubMed ID: 37168100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic predictions from longitudinal CD4 count measures and time to death of HIV/AIDS patients using a Bayesian joint model.
    Muhammed FK; Belay DB; Presanis AM; Sebu AT
    Sci Afr; 2023 Mar; 19():e01519. PubMed ID: 36691645
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved dynamic predictions from joint models of longitudinal and survival data with time-varying effects using P-splines.
    Andrinopoulou ER; Eilers PHC; Takkenberg JJM; Rizopoulos D
    Biometrics; 2018 Jun; 74(2):685-693. PubMed ID: 29092100
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension.
    Liu M; Sun J; Herazo-Maya JD; Kaminski N; Zhao H
    Stat Biosci; 2019 Dec; 11(3):614-629. PubMed ID: 33281995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Validating marker-based incidence estimates in repeatedly screened populations.
    Satten GA; Janssen R; Busch MP; Datta S
    Biometrics; 1999 Dec; 55(4):1224-7. PubMed ID: 11315072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.