BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21306584)

  • 1. Effect of verapamil on the action of methanethiosulfonate reagents on human voltage-gated K(v)1.3 channels: implications for the C-type inactivated state.
    Schmid SI; Grissmer S
    Br J Pharmacol; 2011 Jun; 163(3):662-74. PubMed ID: 21306584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verapamil- and state-dependent effect of 2-aminoethylmethanethiosulphonate (MTSEA) on hK(v)1.3 channels.
    Nikouee A; Janbein M; Grissmer S
    Br J Pharmacol; 2012 Nov; 167(6):1378-88. PubMed ID: 22748056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of K+ and Rb+ on the action of verapamil on a voltage-gated K+ channel, hKv1.3: implications for a second open state?
    Kuras Z; Grissmer S
    Br J Pharmacol; 2009 Jul; 157(5):757-68. PubMed ID: 19371328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels.
    Bruening-Wright A; Lee WS; Adelman JP; Maylie J
    J Gen Physiol; 2007 Dec; 130(6):601-10. PubMed ID: 17998394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of reporter cysteines.
    Becchetti A; Gamel K; Torre V
    J Gen Physiol; 1999 Sep; 114(3):377-92. PubMed ID: 10469728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the activation gate for small conductance Ca2+-activated K+ channels.
    Bruening-Wright A; Schumacher MA; Adelman JP; Maylie J
    J Neurosci; 2002 Aug; 22(15):6499-506. PubMed ID: 12151529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating dependence of inner pore access in inward rectifier K(+) channels.
    Phillips LR; Enkvetchakul D; Nichols CG
    Neuron; 2003 Mar; 37(6):953-62. PubMed ID: 12670424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic Aspects of Verapamil Binding (On-Rate) on Wild-Type and Six hKv1.3 Mutant Channels.
    Diesch AK; Grissmer S
    Cell Physiol Biochem; 2017; 44(1):172-184. PubMed ID: 29131061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis.
    Klein H; Garneau L; Banderali U; Simoes M; Parent L; Sauvé R
    J Gen Physiol; 2007 Apr; 129(4):299-315. PubMed ID: 17353352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and gating changes of the sodium channel induced by mutation of a residue in the upper third of IVS6, creating an external access path for local anesthetics.
    Sunami A; Glaaser IW; Fozzard HA
    Mol Pharmacol; 2001 Apr; 59(4):684-91. PubMed ID: 11259611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels.
    O'Reilly JP; Wang SY; Wang GK
    Biophys J; 2001 Oct; 81(4):2100-11. PubMed ID: 11566781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Block of the lymphocyte K(+) channel mKv1.3 by the phenylalkylamine verapamil: kinetic aspects of block and disruption of accumulation of block by a single point mutation.
    Röbe RJ; Grissmer S
    Br J Pharmacol; 2000 Dec; 131(7):1275-84. PubMed ID: 11090098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a centrally located gate in the pore of a serotonin-gated ion channel.
    Panicker S; Cruz H; Arrabit C; Slesinger PA
    J Neurosci; 2002 Mar; 22(5):1629-39. PubMed ID: 11880493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituted cysteine scanning in D1-S6 of the sodium channel hNav1.4 alters kinetics and structural interactions of slow inactivation.
    Beard JM; Shockett PE; O'Reilly JP
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183129. PubMed ID: 31738900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine mapping in the ion selectivity and toxin binding region of the cardiac Na+ channel pore.
    Chen S; Hartmann HA; Kirsch GE
    J Membr Biol; 1997 Jan; 155(1):11-25. PubMed ID: 9002421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of domain 4 in sodium channel slow inactivation.
    Mitrovic N; George AL; Horn R
    J Gen Physiol; 2000 Jun; 115(6):707-18. PubMed ID: 10828245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels.
    Liu J; Siegelbaum SA
    Neuron; 2000 Dec; 28(3):899-909. PubMed ID: 11163275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessibility of mid-segment domain IV S6 residues of the voltage-gated Na+ channel to methanethiosulfonate reagents.
    Sunami A; Tracey A; Glaaser IW; Lipkind GM; Hanck DA; Fozzard HA
    J Physiol; 2004 Dec; 561(Pt 2):403-13. PubMed ID: 15579536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibility of the Kir6.2 inward rectifier K(+) channel pore.
    Loussouarn G; Phillips LR; Masia R; Rose T; Nichols CG
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):4227-32. PubMed ID: 11274446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine modification of a putative pore residue in ClC-0: implication for the pore stoichiometry of ClC chloride channels.
    Lin CW; Chen TY
    J Gen Physiol; 2000 Oct; 116(4):535-46. PubMed ID: 11004203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.