BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21306584)

  • 21. Functional architecture of the inner pore of a voltage-gated Ca2+ channel.
    Zhen XG; Xie C; Fitzmaurice A; Schoonover CE; Orenstein ET; Yang J
    J Gen Physiol; 2005 Sep; 126(3):193-204. PubMed ID: 16129770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of the activation gate of a voltage-gated Ca2+ channel.
    Xie C; Zhen XG; Yang J
    J Gen Physiol; 2005 Sep; 126(3):205-12. PubMed ID: 16129771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge immobilization caused by modification of internal cysteines in squid Na channels.
    Khodakhah K; Melishchuk A; Armstrong CM
    Biophys J; 1998 Dec; 75(6):2821-9. PubMed ID: 9826604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cysteine modification alters voltage- and Ca(2+)-dependent gating of large conductance (BK) potassium channels.
    Zhang G; Horrigan FT
    J Gen Physiol; 2005 Feb; 125(2):213-36. PubMed ID: 15684095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembrane domain VII of the human apical sodium-dependent bile acid transporter ASBT (SLC10A2) lines the substrate translocation pathway.
    Hussainzada N; Banerjee A; Swaan PW
    Mol Pharmacol; 2006 Nov; 70(5):1565-74. PubMed ID: 16899538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sodium (2-sulfonatoethyl) methanethiosulfonate prevents S-nitroso-L-cysteine activation of Ca2+-activated K+ (BKCa) channels in myocytes of the guinea-pig taenia caeca.
    Lang RJ; Harvey JR; Mulholland EL
    Br J Pharmacol; 2003 Jul; 139(6):1153-63. PubMed ID: 12871834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage-dependent gating rearrangements in the intracellular T1-T1 interface of a K+ channel.
    Wang G; Covarrubias M
    J Gen Physiol; 2006 Apr; 127(4):391-400. PubMed ID: 16533897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Slow-inactivation induced conformational change in domain 2-segment 6 of cardiac Na+ channel.
    O'Reilly JP; Shockett PE
    Biochem Biophys Res Commun; 2006 Jun; 345(1):59-66. PubMed ID: 16674915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cysteine mutagenesis and computer modeling of the S6 region of an intermediate conductance IKCa channel.
    Simoes M; Garneau L; Klein H; Banderali U; Hobeila F; Roux B; Parent L; Sauvé R
    J Gen Physiol; 2002 Jul; 120(1):99-116. PubMed ID: 12084779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate.
    Li MS; Demsey AF; Qi J; Linsdell P
    Br J Pharmacol; 2009 Jul; 157(6):1065-71. PubMed ID: 19466983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A tryptophan residue (W736) in the amino-terminus of the P-segment of domain II is involved in pore formation in Na(v)1.4 voltage-gated sodium channels.
    Carbonneau E; Vijayaragavan K; Chahine M
    Pflugers Arch; 2002 Oct; 445(1):18-24. PubMed ID: 12397382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cysteine scan of the inner vestibule of cyclic nucleotide-gated channels reveals architecture and rearrangement of the pore.
    Flynn GE; Zagotta WN
    J Gen Physiol; 2003 Jun; 121(6):563-82. PubMed ID: 12771192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locale and chemistry of spermine binding in the archetypal inward rectifier Kir2.1.
    Kurata HT; Zhu EA; Nichols CG
    J Gen Physiol; 2010 May; 135(5):495-508. PubMed ID: 20421374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular rearrangements in S6 during slow inactivation in Shaker-IR potassium channels.
    Szanto TG; Papp F; Zakany F; Varga Z; Deutsch C; Panyi G
    J Gen Physiol; 2023 Jul; 155(7):. PubMed ID: 37212728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time- and state-dependent effects of methanethiosulfonate ethylammonium (MTSEA) exposure differ between heart and skeletal muscle voltage-gated Na(+) channels.
    O'Reilly JP; Shockett PE
    Biochim Biophys Acta; 2012 Mar; 1818(3):443-7. PubMed ID: 22155680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localization of the pH gate in Kir1.1 channels.
    Zhang YY; Sackin H; Palmer LG
    Biophys J; 2006 Oct; 91(8):2901-9. PubMed ID: 16891366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel current pathway parallel to the central pore in a mutant voltage-gated potassium channel.
    Prütting S; Grissmer S
    J Biol Chem; 2011 Jun; 286(22):20031-42. PubMed ID: 21498510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the phenylalkylamine binding site in hKv1.3 (H399T), a mutant with a reduced C-type inactivated state.
    Dreker T; Grissmer S
    Mol Pharmacol; 2005 Oct; 68(4):966-73. PubMed ID: 16000530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Serotonin and cocaine-sensitive inactivation of human serotonin transporters by methanethiosulfonates targeted to transmembrane domain I.
    Henry LK; Adkins EM; Han Q; Blakely RD
    J Biol Chem; 2003 Sep; 278(39):37052-63. PubMed ID: 12869570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restoration of fast inactivation in an inactivation-defective human heart sodium channel by the cysteine modifying reagent benzyl-MTS: analysis of IFM-ICM mutation.
    Chahine M; Deschênes I; Trottier E; Chen LQ; Kallen RG
    Biochem Biophys Res Commun; 1997 Apr; 233(3):606-10. PubMed ID: 9168898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.