These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21306632)

  • 1. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects.
    Oostingh GJ; Casals E; Italiani P; Colognato R; Stritzinger R; Ponti J; Pfaller T; Kohl Y; Ooms D; Favilli F; Leppens H; Lucchesi D; Rossi F; Nelissen I; Thielecke H; Puntes VF; Duschl A; Boraschi D
    Part Fibre Toxicol; 2011 Feb; 8(1):8. PubMed ID: 21306632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles.
    Piret JP; Bondarenko OM; Boyles MSP; Himly M; Ribeiro AR; Benetti F; Smal C; Lima B; Potthoff A; Simion M; Dumortier E; Leite PEC; Balottin LB; Granjeiro JM; Ivask A; Kahru A; Radauer-Preiml I; Tischler U; Duschl A; Saout C; Anguissola S; Haase A; Jacobs A; Nelissen I; Misra SK; Toussaint O
    Arch Toxicol; 2017 Jun; 91(6):2315-2330. PubMed ID: 27942788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results.
    Li Y; Fujita M; Boraschi D
    Front Immunol; 2017; 8():472. PubMed ID: 28533772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events.
    Pfaller T; Colognato R; Nelissen I; Favilli F; Casals E; Ooms D; Leppens H; Ponti J; Stritzinger R; Puntes V; Boraschi D; Duschl A; Oostingh GJ
    Nanotoxicology; 2010 Mar; 4(1):52-72. PubMed ID: 20795902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles.
    Li Y; Italiani P; Casals E; Tran N; Puntes VF; Boraschi D
    Nanotoxicology; 2015 May; 9(4):462-73. PubMed ID: 25119419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies.
    Hartmann NB; Engelbrekt C; Zhang J; Ulstrup J; Kusk KO; Baun A
    Nanotoxicology; 2013 Sep; 7(6):1082-94. PubMed ID: 22769854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro assessment of cobalt oxide particle toxicity: identifying and circumventing interference.
    Darolles C; Sage N; Armengaud J; Malard V
    Toxicol In Vitro; 2013 Sep; 27(6):1699-710. PubMed ID: 23624240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assessment of silver nanoparticles immunotoxicity.
    Galbiati V; Cornaghi L; Gianazza E; Potenza MA; Donetti E; Marinovich M; Corsini E
    Food Chem Toxicol; 2018 Feb; 112():363-374. PubMed ID: 29331734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference of silica nanoparticles with the traditional Limulus amebocyte lysate gel clot assay.
    Kucki M; Cavelius C; Kraegeloh A
    Innate Immun; 2014 Apr; 20(3):327-36. PubMed ID: 23884096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Endotoxin in Nano-formulations Using Limulus Amoebocyte Lysate (LAL) Assays.
    Neun BW; Dobrovolskaia MA
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30774143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a surrogate potency assay to determine the angiogenic activity of Stempeucel®, a pooled, ex-vivo expanded, allogeneic human bone marrow mesenchymal stromal cell product.
    Thej C; Ramadasse B; Walvekar A; Majumdar AS; Balasubramanian S
    Stem Cell Res Ther; 2017 Feb; 8(1):47. PubMed ID: 28245882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference of engineered nanoparticles with in vitro toxicity assays.
    Kroll A; Pillukat MH; Hahn D; Schnekenburger J
    Arch Toxicol; 2012 Jul; 86(7):1123-36. PubMed ID: 22407301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations.
    Neun BW; Dobrovolskaia MA
    Methods Mol Biol; 2018; 1682():23-33. PubMed ID: 29039090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a real time PCR-based bioassay for quantification of neutralizing antibodies against human interferon-beta.
    Bertolotto A; Sala A; Caldano M; Capobianco M; Malucchi S; Marnetto F; Gilli F
    J Immunol Methods; 2007 Apr; 321(1-2):19-31. PubMed ID: 17335844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility assessment of up-and down-converting nanoparticles: implications of interferences with in vitro assays.
    Pem B; González-Mancebo D; Moros M; Ocaña M; Becerro AI; Pavičić I; Selmani A; Babič M; Horák D; Vinković Vrček I
    Methods Appl Fluoresc; 2018 Nov; 7(1):014001. PubMed ID: 30398160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of fibrin hydrogel-based in vitro bioassay system for assessment of skin permeability to and pro-inflammatory activity mediated by zinc ion released from nanoparticles.
    Tabei Y; Lin W; Shiomoto S; Nakayama T; Sonoda A; Horie M
    Anal Bioanal Chem; 2020 Dec; 412(30):8269-8282. PubMed ID: 33025033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Methods for Assessing Nanoparticle Toxicity.
    Savage DT; Hilt JZ; Dziubla TD
    Methods Mol Biol; 2019; 1894():1-29. PubMed ID: 30547452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy.
    Dobrovolskaia MA
    J Control Release; 2015 Dec; 220(Pt B):571-83. PubMed ID: 26348388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress.
    Limbach LK; Wick P; Manser P; Grass RN; Bruinink A; Stark WJ
    Environ Sci Technol; 2007 Jun; 41(11):4158-63. PubMed ID: 17612205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.