These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 21306989)
21. Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. López de Quinto S; Martínez-Salas E RNA; 2000 Oct; 6(10):1380-92. PubMed ID: 11073214 [TBL] [Abstract][Full Text] [Related]
22. Activation of picornaviral IRESs by PTB shows differential dependence on each PTB RNA-binding domain. Kafasla P; Lin H; Curry S; Jackson RJ RNA; 2011 Jun; 17(6):1120-31. PubMed ID: 21518806 [TBL] [Abstract][Full Text] [Related]
23. The novel picornavirus Equine rhinitis B virus contains a strong type II internal ribosomal entry site which functions similarly to that of Encephalomyocarditis virus. Hinton TM; Crabb BS J Gen Virol; 2001 Sep; 82(Pt 9):2257-2269. PubMed ID: 11514737 [TBL] [Abstract][Full Text] [Related]
24. Magnesium-dependent folding of a picornavirus IRES element modulates RNA conformation and eIF4G interaction. Lozano G; Fernandez N; Martinez-Salas E FEBS J; 2014 Aug; 281(16):3685-700. PubMed ID: 24961997 [TBL] [Abstract][Full Text] [Related]
25. Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi árva virus IRES. Abaeva IS; Pestova TV; Hellen CU Nucleic Acids Res; 2016 Mar; 44(5):2362-77. PubMed ID: 26783202 [TBL] [Abstract][Full Text] [Related]
26. Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation. Song Y; Tzima E; Ochs K; Bassili G; Trusheim H; Linder M; Preissner KT; Niepmann M RNA; 2005 Dec; 11(12):1809-24. PubMed ID: 16314455 [TBL] [Abstract][Full Text] [Related]
27. A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. Hellen CU; de Breyne S J Virol; 2007 Jun; 81(11):5850-63. PubMed ID: 17392358 [TBL] [Abstract][Full Text] [Related]
28. IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals. Kanda T; Ozawa M; Tsukiyama-Kohara K BMC Vet Res; 2016 Mar; 12():66. PubMed ID: 27036295 [TBL] [Abstract][Full Text] [Related]
29. Functional involvement of polypyrimidine tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth disease virus. Niepmann M; Petersen A; Meyer K; Beck E J Virol; 1997 Nov; 71(11):8330-9. PubMed ID: 9343186 [TBL] [Abstract][Full Text] [Related]
30. Polypyrimidine tract binding protein stabilizes the encephalomyocarditis virus IRES structure via binding multiple sites in a unique orientation. Kafasla P; Morgner N; Pöyry TA; Curry S; Robinson CV; Jackson RJ Mol Cell; 2009 Jun; 34(5):556-68. PubMed ID: 19524536 [TBL] [Abstract][Full Text] [Related]
31. A novel protein-RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. Stassinopoulos IA; Belsham GJ RNA; 2001 Jan; 7(1):114-22. PubMed ID: 11214173 [TBL] [Abstract][Full Text] [Related]
33. IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. López de Quinto S; Lafuente E; Martínez-Salas E RNA; 2001 Sep; 7(9):1213-26. PubMed ID: 11565745 [TBL] [Abstract][Full Text] [Related]
34. Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA. Pacheco A; Reigadas S; Martínez-Salas E Proteomics; 2008 Nov; 8(22):4782-90. PubMed ID: 18937254 [TBL] [Abstract][Full Text] [Related]
35. A distinct class of internal ribosomal entry site in members of the Kobuvirus and proposed Salivirus and Paraturdivirus genera of the Picornaviridae. Sweeney TR; Dhote V; Yu Y; Hellen CU J Virol; 2012 Feb; 86(3):1468-86. PubMed ID: 22114340 [TBL] [Abstract][Full Text] [Related]
36. Ribosomal Protein L13 Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus in a Helicase DDX3-Dependent Manner. Han S; Sun S; Li P; Liu Q; Zhang Z; Dong H; Sun M; Wu W; Wang X; Guo H J Virol; 2020 Jan; 94(2):. PubMed ID: 31619563 [TBL] [Abstract][Full Text] [Related]
37. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Pestova TV; Shatsky IN; Hellen CU Mol Cell Biol; 1996 Dec; 16(12):6870-8. PubMed ID: 8943342 [TBL] [Abstract][Full Text] [Related]
38. PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation. Asnani M; Pestova TV; Hellen CU Nucleic Acids Res; 2016 Nov; 44(20):9902-9917. PubMed ID: 27387282 [TBL] [Abstract][Full Text] [Related]
39. Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3' cap-independent translation element (BTE). Zhao P; Liu Q; Miller WA; Goss DJ J Biol Chem; 2017 Apr; 292(14):5921-5931. PubMed ID: 28242763 [TBL] [Abstract][Full Text] [Related]
40. G3BP1 interacts directly with the FMDV IRES and negatively regulates translation. Galan A; Lozano G; Piñeiro D; Martinez-Salas E FEBS J; 2017 Oct; 284(19):3202-3217. PubMed ID: 28755480 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]