These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21307006)

  • 21. Visually guided auditory attention in a dynamic "cocktail-party" speech perception task: ERP evidence for age-related differences.
    Getzmann S; Wascher E
    Hear Res; 2017 Feb; 344():98-108. PubMed ID: 27825858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extension and evaluation of a near-end listening enhancement algorithm for listeners with normal and impaired hearing.
    Rennies J; Drefs J; Hülsmeier D; Schepker H; Doclo S
    J Acoust Soc Am; 2017 Apr; 141(4):2526. PubMed ID: 28464693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of segmentation difficulties in speech-in-speech understanding in older and hearing-impaired adults.
    Woodfield A; Akeroyd MA
    J Acoust Soc Am; 2010 Jul; 128(1):EL26-31. PubMed ID: 20649185
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of fundamental frequency and vocal-tract length cues on sentence segregation by listeners with hearing loss.
    Mackersie CL; Dewey J; Guthrie LA
    J Acoust Soc Am; 2011 Aug; 130(2):1006-19. PubMed ID: 21877813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of age and hearing impairment on the ability to benefit from temporal and spectral modulation.
    Hall JW; Buss E; Grose JH; Roush PA
    Ear Hear; 2012; 33(3):340-8. PubMed ID: 22237164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A perspective on brain-behavior relationships and effects of age and hearing using speech-in-noise stimuli.
    Billings CJ; Madsen BM
    Hear Res; 2018 Nov; 369():90-102. PubMed ID: 29661615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of competing noise on cortical auditory evoked potentials elicited by speech sounds in 7- to 25-year-old listeners.
    Gustafson SJ; Billings CJ; Hornsby BWY; Key AP
    Hear Res; 2019 Mar; 373():103-112. PubMed ID: 30660965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age effects on perceptual restoration of degraded interrupted sentences.
    Jaekel BN; Newman RS; Goupell MJ
    J Acoust Soc Am; 2018 Jan; 143(1):84. PubMed ID: 29390768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Older adults expend more listening effort than young adults recognizing audiovisual speech in noise.
    Gosselin PA; Gagné JP
    Int J Audiol; 2011 Nov; 50(11):786-92. PubMed ID: 21916790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Problems hearing in noise in older adults: a review of spatial processing disorder.
    Glyde H; Hickson L; Cameron S; Dillon H
    Trends Amplif; 2011 Sep; 15(3):116-26. PubMed ID: 22072599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of subcortical auditory processing and cognitive measures on cocktail party listening in younger and older adults.
    Jain C; Dwarakanath VM; G A
    Int J Audiol; 2019 Feb; 58(2):87-96. PubMed ID: 30646763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speech based transmission index for all: An intelligibility metric for variable hearing ability.
    Mechergui N; Djaziri-Larbi S; Jaïdane M
    J Acoust Soc Am; 2017 Mar; 141(3):1470. PubMed ID: 28372108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How repetition influences speech understanding by younger, middle-aged and older adults.
    Helfer KS; Freyman RL; Merchant GR
    Int J Audiol; 2018 Sep; 57(9):695-702. PubMed ID: 29801416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of selective consonant amplification on sentence recognition in noise by hearing-impaired listeners.
    Saripella R; Loizou PC; Thibodeau L; Alford JA
    J Acoust Soc Am; 2011 Nov; 130(5):3028-37. PubMed ID: 22087930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The neurobiology of speech perception decline in aging.
    Bilodeau-Mercure M; Lortie CL; Sato M; Guitton MJ; Tremblay P
    Brain Struct Funct; 2015 Mar; 220(2):979-97. PubMed ID: 24402675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signal envelope and speech intelligibility differentially impact auditory motion perception.
    Warnecke M; Litovsky RY
    Sci Rep; 2021 Jul; 11(1):15117. PubMed ID: 34302032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of fundamental-frequency and sentence-onset differences on speech-identification performance of young and older adults in a competing-talker background.
    Lee JH; Humes LE
    J Acoust Soc Am; 2012 Sep; 132(3):1700-17. PubMed ID: 22978898
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of age and hearing loss on the relationship between discrimination of stochastic frequency modulation and speech perception.
    Sheft S; Shafiro V; Lorenzi C; McMullen R; Farrell C
    Ear Hear; 2012; 33(6):709-20. PubMed ID: 22790319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Speech perception in tinnitus is related to individual distress level - A neurophysiological study.
    Jagoda L; Giroud N; Neff P; Kegel A; Kleinjung T; Meyer M
    Hear Res; 2018 Sep; 367():48-58. PubMed ID: 30031353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.