BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21307577)

  • 1. Solubilization and structural stability of bacteriorhodopsin with a mild nonionic detergent, n-Octyl-β-thioglucoside.
    Asada A; Sonoyama M
    Biosci Biotechnol Biochem; 2011; 75(2):376-8. PubMed ID: 21307577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of octyl-beta-thioglucopyranoside with lipid membranes.
    Wenk MR; Seelig J
    Biophys J; 1997 Nov; 73(5):2565-74. PubMed ID: 9370450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced denaturation of bacteriorhodopsin solubilized by octyl-beta-glucoside.
    Mukai Y; Kamo N; Mitaku S
    Protein Eng; 1999 Sep; 12(9):755-9. PubMed ID: 10506285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive detection of protein-lipid interaction change on bacteriorhodopsin using dodecyl β-D-maltoside.
    Sasaki T; Demura M; Kato N; Mukai Y
    Biochemistry; 2011 Mar; 50(12):2283-90. PubMed ID: 21314119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron cryomicroscopy of bacteriorhodopsin vesicles: mechanism of vesicle formation.
    Denkov ND; Yoshimura H; Kouyama T; Walz J; Nagayama K
    Biophys J; 1998 Mar; 74(3):1409-20. PubMed ID: 9512037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of n-octyl-beta-D-thioglucoside, a new nonionic detergent, for solubilization and reconstitution of membrane proteins.
    Tsuchiya T; Saito S
    J Biochem; 1984 Nov; 96(5):1593-7. PubMed ID: 6396301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsecond exchange of internal water molecules in bacteriorhodopsin.
    Gottschalk M; Dencher NA; Halle B
    J Mol Biol; 2001 Aug; 311(3):605-21. PubMed ID: 11493013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photobleaching of bacteriorhodopsin solubilized with triton X-100.
    Sasaki T; Sonoyama M; Demura M; Mitaku S
    Photochem Photobiol; 2005; 81(5):1131-7. PubMed ID: 15934791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies.
    Takeda K; Sato H; Hino T; Kono M; Fukuda K; Sakurai I; Okada T; Kouyama T
    J Mol Biol; 1998 Oct; 283(2):463-74. PubMed ID: 9769218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detergent delipidation and solubilization strategies for high-resolution NMR of the membrane protein bacteriorhodopsin.
    Seigneuret M; Neumann JM; Rigaud JL
    J Biol Chem; 1991 Jun; 266(16):10066-9. PubMed ID: 2037565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics.
    Varade V; Markus T; Vankayala K; Friedman N; Sheves M; Waldeck DH; Naaman R
    Phys Chem Chem Phys; 2018 Jan; 20(2):1091-1097. PubMed ID: 29238765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriorhodopsin/amphipol complexes: structural and functional properties.
    Gohon Y; Dahmane T; Ruigrok RW; Schuck P; Charvolin D; Rappaport F; Timmins P; Engelman DM; Tribet C; Popot JL; Ebel C
    Biophys J; 2008 May; 94(9):3523-37. PubMed ID: 18192360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriorhodopsin "detergent-monomers," blue shift and velocity of light-dark adaptation.
    Massotte D; Aghion J
    Biochem Biophys Res Commun; 1991 Dec; 181(3):1301-5. PubMed ID: 1764081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization steps of dark-adapted purple membrane by Triton X-100. A spectroscopic study.
    Meyer O; Ollivon M; Paternostre MT
    FEBS Lett; 1992 Jul; 305(3):249-53. PubMed ID: 1299625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered-membranes and engineered-micelles as efficient tools for purification of halorhodopsin and bacteriorhodopsin.
    Dutta S; Nair DK; Namboothiri IN; Wachtel E; Friedman N; Sheves M; Patchornik G
    Analyst; 2015 Jan; 140(1):204-12. PubMed ID: 25365824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonionic detergent effects on spectroscopic characteristics and the photocycle of bacteriorhodopsin in purple membranes.
    Lam E; Packer L
    Arch Biochem Biophys; 1983 Mar; 221(2):557-64. PubMed ID: 6838208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure.
    Faham S; Bowie JU
    J Mol Biol; 2002 Feb; 316(1):1-6. PubMed ID: 11829498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization of bacteriorhodopsin solubilized by a tripod amphiphile.
    Theisen MJ; Potocky TB; McQuade DT; Gellman SH; Chiu ML
    Biochim Biophys Acta; 2005 Aug; 1751(2):213-6. PubMed ID: 15963773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of protein and surfactant interactions in membrane-protein crystallization.
    Berger BW; Gendron CM; Robinson CR; Kaler EW; Lenhoff AM
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):724-30. PubMed ID: 15930629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Lipid-Bound Bacteriorhodopsin Trimer Complex Directly from Purple Membrane by Native Mass Spectrometry.
    Le J; Loo JA
    J Am Soc Mass Spectrom; 2023 Dec; 34(12):2620-2624. PubMed ID: 37975648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.