These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21307603)

  • 1. Culture-independent phylogenetic analysis of the microbial community in industrial sugarcane bagasse feedstock piles.
    Rattanachomsri U; Kanokratana P; Eurwilaichitr L; Igarashi Y; Champreda V
    Biosci Biotechnol Biochem; 2011; 75(2):232-9. PubMed ID: 21307603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic analysis and metabolic potential of microbial communities in an industrial bagasse collection site.
    Kanokratana P; Mhuantong W; Laothanachareon T; Tangphatsornruang S; Eurwilaichitr L; Pootanakit K; Champreda V
    Microb Ecol; 2013 Aug; 66(2):322-34. PubMed ID: 23504022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile.
    Gebbie L; Dam TT; Ainscough R; Palfreyman R; Cao L; Harrison M; O'Hara I; Speight R
    BMC Biotechnol; 2020 Feb; 20(1):12. PubMed ID: 32111201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia.
    Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure.
    Colombo LT; de Oliveira MN; Carneiro DG; de Souza RA; Alvim MC; Dos Santos JC; da Silva CC; Vidigal PM; da Silveira WB; Passos FM
    Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1217-33. PubMed ID: 27350392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.
    de Souza WR; Maitan-Alfenas GP; de GouvĂȘa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH
    Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the application of sugarcane bagasse on lindane (gamma-HCH) mobility through soil column: implication for biotreatment.
    Abhilash PC; Singh N
    Bioresour Technol; 2008 Dec; 99(18):8961-6. PubMed ID: 18562197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositional changes in sugarcane bagasse on low temperature, long-term diluted ammonia treatment.
    Kim M; Aita G; Day DF
    Appl Biochem Biotechnol; 2010 May; 161(1-8):34-40. PubMed ID: 19916000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial community composition shifts in the gut of Periplaneta americana fed on different lignocellulosic materials.
    Bertino-Grimaldi D; Medeiros MN; Vieira RP; Cardoso AM; Turque AS; Silveira CB; Albano RM; Bressan-Nascimento S; Garcia ES; de Souza W; Martins OB; Machado EA
    Springerplus; 2013; 2():609. PubMed ID: 24324923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis.
    Kanokratana P; Uengwetwanit T; Rattanachomsri U; Bunterngsook B; Nimchua T; Tangphatsornruang S; Plengvidhya V; Champreda V; Eurwilaichitr L
    Microb Ecol; 2011 Apr; 61(3):518-28. PubMed ID: 21057783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse.
    Fu Z; Holtzapple MT
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1669-79. PubMed ID: 21365471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Community dynamics of cellulose-adapted thermophilic bacterial consortia.
    Eichorst SA; Varanasi P; Stavila V; Zemla M; Auer M; Singh S; Simmons BA; Singer SW
    Environ Microbiol; 2013 Sep; 15(9):2573-87. PubMed ID: 23763762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and its application in enhancing biomethane production.
    Wongfaed N; O-Thong S; Sittijunda S; Reungsang A
    Sci Rep; 2023 Feb; 13(1):2968. PubMed ID: 36804594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state anaerobic digestion of sugarcane bagasse at different solid concentrations: Impact of bio augmented cellulolytic bacteria on methane yield and insights on microbial diversity.
    Arelli V; Mamindlapelli NK; Juntupally S; Begum S; Anupoju GR
    Bioresour Technol; 2021 Nov; 340():125675. PubMed ID: 34333349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application.
    Ventorino V; Aliberti A; Faraco V; Robertiello A; Giacobbe S; Ercolini D; Amore A; Fagnano M; Pepe O
    Sci Rep; 2015 Feb; 5():8161. PubMed ID: 25641069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes.
    Talia P; Sede SM; Campos E; Rorig M; Principi D; Tosto D; Hopp HE; Grasso D; Cataldi A
    Res Microbiol; 2012 Apr; 163(3):221-32. PubMed ID: 22202170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production.
    Hollister EB; Forrest AK; Wilkinson HH; Ebbole DJ; Malfatti SA; Tringe SG; Holtzapple MT; Gentry TJ
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):389-99. PubMed ID: 20676626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments.
    Pandey S; Singh S; Yadav AN; Nain L; Saxena AK
    Biosci Biotechnol Biochem; 2013; 77(7):1474-80. PubMed ID: 23832366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen.
    Schellenberger S; Kolb S; Drake HL
    Environ Microbiol; 2010 Apr; 12(4):845-61. PubMed ID: 20050868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar from anaerobically digested sugarcane bagasse.
    Inyang M; Gao B; Pullammanappallil P; Ding W; Zimmerman AR
    Bioresour Technol; 2010 Nov; 101(22):8868-72. PubMed ID: 20634061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.