These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21308377)

  • 1. Wet/dry mapping: using citizen scientists to monitor the extent of perennial surface flow in dryland regions.
    Turner DS; Richter HE
    Environ Manage; 2011 Mar; 47(3):497-505. PubMed ID: 21308377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Status of the Riparian ecosystem in the upper San Pedro River, Arizona: application of an assessment model.
    Stromberg JC; Lite SJ; Rychener TJ; Levick LR; Dixon MD; Watts JM
    Environ Monit Assess; 2006 Apr; 115(1-3):145-73. PubMed ID: 16648960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scenario analysis for the San Pedro River, analyzing hydrological consequences of a future environment.
    Kepner WG; Semmens DJ; Bassett SD; Mouat DA; Goodrich DC
    Environ Monit Assess; 2004 Jun; 94(1-3):115-27. PubMed ID: 15141450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relationship between groundwater level in riparian wetlands and water level in the river].
    Xu HS; Zhao TQ; Meng HQ; Xu ZX; Ma CH
    Huan Jing Ke Xue; 2011 Feb; 32(2):362-7. PubMed ID: 21528555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing runoff generation in riparian wetlands: monitoring groundwater-surface water dynamics at the micro-catchment scale.
    Scheliga B; Tetzlaff D; Nuetzmann G; Soulsby C
    Environ Monit Assess; 2019 Jan; 191(2):116. PubMed ID: 30701325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroinvertebrate community responses to hydrological controls and groundwater abstraction effects across intermittent and perennial headwater streams.
    White JC; House A; Punchard N; Hannah DM; Wilding NA; Wood PJ
    Sci Total Environ; 2018 Jan; 610-611():1514-1526. PubMed ID: 28687118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking stream flow and groundwater to avian habitat in a desert riparian system.
    Merritt DM; Bateman HL
    Ecol Appl; 2012 Oct; 22(7):1973-88. PubMed ID: 23210313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting hydrologic disturbance of streams using species occurrence data.
    Fox JT; Magoulick DD
    Sci Total Environ; 2019 Oct; 686():254-263. PubMed ID: 31181513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spatially explicit framework for quantifying downstream hydrologic conditions.
    Strager MP; Petty JT; Strager JM; Barker-Fulton J
    J Environ Manage; 2009 Apr; 90(5):1854-61. PubMed ID: 19155121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A watershed in our profession.
    Trefry MG
    Ground Water; 2009; 47(1):1. PubMed ID: 18715263
    [No Abstract]   [Full Text] [Related]  

  • 11. Impact of a first-order riparian zone on nitrogen removal and export from an agricultural ecosystem.
    Angier JT; McCarty GW; Gish TJ; Daughtry CS
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():642-51. PubMed ID: 12805819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying spatiotemporal variation in headwater stream length using flow intermittency sensors.
    Jensen CK; McGuire KJ; McLaughlin DL; Scott DT
    Environ Monit Assess; 2019 Mar; 191(4):226. PubMed ID: 30887248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower Tarim River.
    Xu H; Ye M; Song Y; Chen Y
    Environ Monit Assess; 2007 Aug; 131(1-3):37-48. PubMed ID: 17225962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Relationship between groundwater quality index of physics and chemistry in riparian zone and water quality in river].
    Xu HS; Zhao TQ; Meng HQ; Xu ZX; Ma CH
    Huan Jing Ke Xue; 2011 Mar; 32(3):632-40. PubMed ID: 21634157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management.
    Lane BA; Sandoval-Solis S; Stein ED; Yarnell SM; Pasternack GB; Dahlke HE
    Environ Manage; 2018 Oct; 62(4):678-693. PubMed ID: 29934651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major ion chemistry and hydrochemical studies of groundwater of parts of Palar river basin, Tamil Nadu, India.
    Dar MA; Sankar K; Dar IA
    Environ Monit Assess; 2011 May; 176(1-4):621-36. PubMed ID: 20886289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Han River watershed management initiative for the South-to-North Water Transfer project (Middle Route) of China.
    Zhang Q; Xu Z; Shen Z; Li S; Wang S
    Environ Monit Assess; 2009 Jan; 148(1-4):369-77. PubMed ID: 18306047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sources and seasonal variation of PAHs in the sediments of drinking water reservoirs in Hong Kong and the Dongjiang River (China).
    Liang Y; Fung PK; Tse MF; Hong HC; Wong MH
    Environ Monit Assess; 2008 Nov; 146(1-3):41-50. PubMed ID: 18058251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water quality assessment of coastal Caloosahatchee River watershed, Florida.
    Liu Z; Choudhury SH; Xia M; Holt J; Wallen CM; Yuk S; Sanborn SC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Aug; 44(10):972-84. PubMed ID: 19827489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.
    Krause S; Jacobs J; Voss A; Bronstert A; Zehe E
    Sci Total Environ; 2008 Jan; 389(1):149-64. PubMed ID: 17915291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.