BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21308738)

  • 1. Electrophysiological characterization of potassium conductive pathways in Trypanosoma cruzi.
    Jimenez V; Henriquez M; Galanti N; Riquelme G
    J Cell Biochem; 2011 Apr; 112(4):1093-102. PubMed ID: 21308738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Calcium-Activated Potassium Channel Controls Membrane Potential and Intracellular pH in
    Barrera P; Skorka C; Boktor M; Dave N; Jimenez V
    Front Cell Infect Microbiol; 2019; 9():464. PubMed ID: 32010643
    [No Abstract]   [Full Text] [Related]  

  • 3. Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures.
    Jimenez V; Paredes R; Sosa MA; Galanti N
    J Cell Biochem; 2008 Oct; 105(3):688-98. PubMed ID: 18668509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The challenge of Chagas' disease: has the human pathogen, Trypanosoma cruzi, learned how to modulate signaling events to subvert host cells?
    Lima FM; Oliveira P; Mortara RA; Silveira JF; Bahia D
    N Biotechnol; 2010 Dec; 27(6):837-43. PubMed ID: 20172059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, purification and characterization of GPI-anchored membrane proteins from Trypanosoma rangeli and Trypanosoma cruzi.
    Añez-Rojas N; García-Lugo P; Crisante G; Rojas A; Añez N
    Acta Trop; 2006 Feb; 97(2):140-5. PubMed ID: 16246288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and electrophysiological characterization of a novel cation channel of Trypanosoma cruzi.
    Jimenez V; Docampo R
    PLoS Pathog; 2012; 8(6):e1002750. PubMed ID: 22685407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Barium, TEA and sodium sensitive potassium channels are present in the human placental syncytiotrophoblast apical membrane.
    Díaz P; Vallejos C; Guerrero I; Riquelme G
    Placenta; 2008 Oct; 29(10):883-91. PubMed ID: 18708253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of delayed rectifier K+ currents in rabbit coronary artery cells near resting membrane potential.
    Ishikawa T; Eckman DM; Keef KD
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1116-22. PubMed ID: 9365823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional evidence for a supramolecular structure for the Streptomyces lividans potassium channel KcsA.
    Zakharian E; Reusch RN
    Biochem Biophys Res Commun; 2004 Sep; 322(3):1059-65. PubMed ID: 15336572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The activity of a transient potassium current in retinal glial (Müller) cells depends on extracellular calcium.
    Bringmann A; Schopf S; Faude F; Skatchkov SN; Enzmann V; Reichenbach A
    J Hirnforsch; 1999; 39(4):539-50. PubMed ID: 10841453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-sensing pathway for SK channels in the ovine adrenal medulla.
    Keating DJ; Rychkov GY; Giacomin P; Roberts ML
    Clin Exp Pharmacol Physiol; 2005 Oct; 32(10):882-7. PubMed ID: 16173951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Trypanosoma cruzi: transport of essential metabolites acquired from the host].
    Pereira CA; Carrillo C; Miranda MR; Bouvier LA; Cánepa GE
    Medicina (B Aires); 2008; 68(5):398-404. PubMed ID: 18977714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new model system for investigation of ionic channels in filamentous fungi: evidence for existence of two K+-permeable ionic channels in Phycomyces blakesleeanus.
    Zivić M; Popović M; Zivanović B; Vucinić Z
    Ann N Y Acad Sci; 2005 Jun; 1048():491-5. PubMed ID: 16154984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional roles of ion channels in lymphocytes.
    Cahalan MD; Lewis RS
    Semin Immunol; 1990 Mar; 2(2):107-17. PubMed ID: 1717052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characterization of the glutamate transport in Trypanosoma cruzi.
    Silber AM; Rojas RL; Urias U; Colli W; Alves MJ
    Int J Parasitol; 2006 Feb; 36(2):157-63. PubMed ID: 16373069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role for ionic fluxes on cell death and apoptotic volume decrease in cultured cerebellar granule neurons.
    Hernández-Enríquez B; Arellano RO; Morán J
    Neuroscience; 2010 May; 167(2):298-311. PubMed ID: 20144697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypanosoma cruzi calreticulin: a possible role in Chagas' disease autoimmunity.
    Ribeiro CH; López NC; Ramírez GA; Valck CE; Molina MC; Aguilar L; Rodríguez M; Maldonado I; Martínez R; González C; Troncoso R; Lavandero S; Gingras AR; Schwaeble W; Ferreira A
    Mol Immunol; 2009 Mar; 46(6):1092-9. PubMed ID: 19108895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic population of excitable cells: the taste receptor cells.
    Ghiaroni V; Fieni F; Silvestri F; Pietra P; Bigiani A
    Arch Ital Biol; 2005 Sep; 143(3-4):199-206. PubMed ID: 16097496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that TASK1 channels contribute to the background current in AH/type II neurons of the guinea-pig intestine.
    Matsuyama H; Nguyen TV; Hunne B; Thacker M; Needham K; McHugh D; Furness JB
    Neuroscience; 2008 Aug; 155(3):738-50. PubMed ID: 18590799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.