BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21308814)

  • 1. Disproportionation for growing copper nanowires and their controlled self-assembly facilitated by ligand exchange.
    Ye E; Zhang SY; Liu S; Han MY
    Chemistry; 2011 Mar; 17(11):3074-7. PubMed ID: 21308814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polytriazoles as copper(I)-stabilizing ligands in catalysis.
    Chan TR; Hilgraf R; Sharpless KB; Fokin VV
    Org Lett; 2004 Aug; 6(17):2853-5. PubMed ID: 15330631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction.
    Lu X; Yavuz MS; Tuan HY; Korgel BA; Xia Y
    J Am Chem Soc; 2008 Jul; 130(28):8900-1. PubMed ID: 18540574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-mediated shape control in the solvothermal synthesis of titanium dioxide nanospheres, nanorods and nanowires.
    Gonzalo-Juan I; McBride JR; Dickerson JH
    Nanoscale; 2011 Sep; 3(9):3799-804. PubMed ID: 21845260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper(II)-Mediated Self-Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires.
    Wang C; Sun Y; Wang J; Xu H; Lu JR
    Chem Asian J; 2015 Sep; 10(9):1953-8. PubMed ID: 26110265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical branched Cu2O nanowires with enhanced photocatalytic activity and stability for H2 production.
    Zhao Y; Wang W; Li Y; Zhang Y; Yan Z; Huo Z
    Nanoscale; 2014 Jan; 6(1):195-8. PubMed ID: 24241480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aqueous preparation of surfactant-free copper selenide nanowires.
    Chen X; Li Z; Yang J; Sun Q; Dou S
    J Colloid Interface Sci; 2015 Mar; 442():140-6. PubMed ID: 25527088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires.
    Mohl M; Pusztai P; Kukovecz A; Konya Z; Kukkola J; Kordas K; Vajtai R; Ajayan PM
    Langmuir; 2010 Nov; 26(21):16496-502. PubMed ID: 20597526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction.
    Han S; Hong S; Yeo J; Kim D; Kang B; Yang MY; Ko SH
    Adv Mater; 2015 Nov; 27(41):6397-403. PubMed ID: 26372164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of oxidative etching in the synthesis of ultrathin single-crystalline Au nanowires.
    Kisner A; Heggen M; Fernández E; Lenk S; Mayer D; Simon U; Offenhäusser A; Mourzina Y
    Chemistry; 2011 Aug; 17(34):9503-7. PubMed ID: 21735495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent fracture mode transition in copper nanowires.
    Peng C; Zhan Y; Lou J
    Small; 2012 Jun; 8(12):1889-94. PubMed ID: 22461261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of ligand to control the mechanism of nitric oxide reduction of copper(II) complexes and ligand nitrosation.
    Kalita A; Kumar P; Deka RC; Mondal B
    Inorg Chem; 2011 Dec; 50(23):11868-76. PubMed ID: 22040303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A delicate electronic balance between metal and ligand in [Cu-P-Cu-P] diamondoids: oxidation state dependent plasticity and the formation of a singlet diradicaloid.
    Rhee YM; Head-Gordon M
    J Am Chem Soc; 2008 Mar; 130(12):3878-87. PubMed ID: 18314976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of copper sulfide dendrites and nanowires from elemental sulfur on TEM Cu grids under ambient conditions.
    Han Q; Sun S; Li J; Wang X
    Nanotechnology; 2011 Apr; 22(15):155607. PubMed ID: 21389583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative dehydrogenation of an amine group of a macrocyclic ligand in the coordination sphere of a Cu(II) complex.
    Christian GJ; Arbuse A; Fontrodona X; Martinez MA; Llobet A; Maseras F
    Dalton Trans; 2009 Aug; (30):6013-20. PubMed ID: 19623402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helical Growth of Ultrathin Gold-Copper Nanowires.
    Mendoza-Cruz R; Bazán-Díaz L; Velázquez-Salazar JJ; Plascencia-Villa G; Bahena-Uribe D; Reyes-Gasga J; Romeu D; Guisbiers G; Herrera-Becerra R; José-Yacamán M
    Nano Lett; 2016 Mar; 16(3):1568-73. PubMed ID: 26849249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ XAS and IR studies on Cu:SAPO-5 and Cu:SAPO-11: the contributory role of monomeric linear copper(i) species in the selective catalytic reduction of NOx by propene.
    Mathisen K; Stockenhuber M; Nicholson DG
    Phys Chem Chem Phys; 2009 Jul; 11(26):5476-88. PubMed ID: 19551218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of copper nanowires by electroless deposition using microtubules as templates.
    Valenzuela K; Raghavan S; Deymier PA; Hoying J
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3416-21. PubMed ID: 19051888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status.
    Michel F; Thomas F; Hamman S; Saint-Aman E; Bucher C; Pierre JL
    Chemistry; 2004 Sep; 10(17):4115-25. PubMed ID: 15352095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications.
    Yang HJ; He SY; Tuan HY
    Langmuir; 2014 Jan; 30(2):602-10. PubMed ID: 24367924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.