These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 21309023)
1. Effects of aging and mixed nonaqueous-phase liquid sources in soil systems on earthworm bioaccumulation, microbial degradation, sequestration, and aqueous desorption of pyrene. Petersen EJ; Tang J; Weber WJ Environ Toxicol Chem; 2011 Apr; 30(4):988-96. PubMed ID: 21309023 [TBL] [Abstract][Full Text] [Related]
2. [Aging of spiked pyrene in two paddy soils and their particle-size fractions after soil incubation and changes in extractability and bio-availability to earthworm]. Li JH; Pan GX Huan Jing Ke Xue; 2005 Nov; 26(6):131-6. PubMed ID: 16447446 [TBL] [Abstract][Full Text] [Related]
3. Assessment of pyrene bioavailability in soil by mild hydroxypropyl-β-cyclodextrin extraction. Khan MI; Cheema SA; Shen C; Zhang C; Tang X; Malik Z; Chen X; Chen Y Arch Environ Contam Toxicol; 2011 Jan; 60(1):107-15. PubMed ID: 20437042 [TBL] [Abstract][Full Text] [Related]
4. Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils. Hu XY; Wen B; Zhang S; Shan XQ Ecotoxicol Environ Saf; 2005 Sep; 62(1):26-34. PubMed ID: 15978288 [TBL] [Abstract][Full Text] [Related]
5. Fate and bioavailability of ¹⁴C-pyrene and ¹⁴C-lindane in sterile natural and artificial soils and the influence of aging. Smídová K; Hofman J; Ite AE; Semple KT Environ Pollut; 2012 Dec; 171():93-8. PubMed ID: 22892571 [TBL] [Abstract][Full Text] [Related]
6. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Petersen EJ; Pinto RA; Landrum PF; Weber WJ Environ Sci Technol; 2009 Jun; 43(11):4181-7. PubMed ID: 19569349 [TBL] [Abstract][Full Text] [Related]
7. Development of engineered natural organic sorbents for environmental applications. 4. Effects on biodegradation and distribution of pyrene in soils. Tang J; Petersen E; Weber WJ Environ Sci Technol; 2008 Feb; 42(4):1283-9. PubMed ID: 18351106 [TBL] [Abstract][Full Text] [Related]
8. [Hexachlorobenzene: its aging characteristic in different soils and accumulation in earthworm]. Gao HJ; Jiang X Ying Yong Sheng Tai Xue Bao; 2009 Mar; 20(3):691-5. PubMed ID: 19637612 [TBL] [Abstract][Full Text] [Related]
9. Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids. Garcia-Junco M; Gomez-Lahoz C; Niqui-Arroyo JL; Ortega-Calvo JJ Environ Sci Technol; 2003 Jul; 37(13):2988-96. PubMed ID: 12875405 [TBL] [Abstract][Full Text] [Related]
10. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Zhang D; Zhu L Environ Pollut; 2012 May; 164():169-74. PubMed ID: 22361056 [TBL] [Abstract][Full Text] [Related]
11. [Comparative study on water desorption and thermal desorption of aromatic hydrocarbons in soils]. Zhang W; Zhang Y; Sun HW Huan Jing Ke Xue; 2010 Jan; 31(1):192-8. PubMed ID: 20329538 [TBL] [Abstract][Full Text] [Related]
12. Mass transfer and hydrocarbon biodegradation of aged soil in slurry phase. García-Rivero M; Saucedo-Castañeda G; Flores De Hoyos S; Gutiérrez-Rojas M Biotechnol Prog; 2002; 18(4):728-33. PubMed ID: 12153305 [TBL] [Abstract][Full Text] [Related]
13. The effects of aging time on the fraction distribution and bioavailability of PAH. Ma L; Zhang J; Han L; Li W; Xu L; Hu F; Li H Chemosphere; 2012 Mar; 86(10):1072-8. PubMed ID: 22236588 [TBL] [Abstract][Full Text] [Related]
14. Effects of rice straw-derived dissolved organic matter on pyrene sorption by soil. Zhou J; Chen H; Huang W Environ Toxicol Chem; 2010 Sep; 29(9):1967-75. PubMed ID: 20821654 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of pyrene by Phanerochaete chrysosporium and enzyme activities in soils: effect of SOM, sterilization and aging. Wang C; Sun H; Liu H; Wang B J Environ Sci (China); 2014 May; 26(5):1135-44. PubMed ID: 25079644 [TBL] [Abstract][Full Text] [Related]
16. Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community. Ye J; Yin H; Peng H; Bai J; Li Y Ecotoxicol Environ Saf; 2014 Dec; 110():129-35. PubMed ID: 25232990 [TBL] [Abstract][Full Text] [Related]
17. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique. Papadopoulos A; Reid BJ; Semple KT J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278 [TBL] [Abstract][Full Text] [Related]
18. Spacial characteristics of pyrene degradation and soil microbial activity with the distance from the ryegrass (Lolium perenne L.) root surface in a multi-interlayer rhizobox. Xie X; Liao M; Fang S; Peng Y; Yang J; Chai J J Hazard Mater; 2012 Apr; 213-214():156-60. PubMed ID: 22341493 [TBL] [Abstract][Full Text] [Related]
19. Uptake kinetics of four hydrophobic organic pollutants in the earthworm Eisenia andrei in aged laboratory-contaminated natural soils. Svobodová M; Hofman J; Bielská L; Šmídová K Ecotoxicol Environ Saf; 2020 Apr; 192():110317. PubMed ID: 32061977 [TBL] [Abstract][Full Text] [Related]
20. Effects of aging and freeze-thawing on extractability of pyrene in soil. Zhao Q; Li P; Stagnitti F; Ye J; Dong D; Zhang Y; Li P Chemosphere; 2009 Jul; 76(4):447-52. PubMed ID: 19403156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]