These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21309300)

  • 1. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure?
    Bezodis NE; Salo AI; Trewartha G
    Sports Biomech; 2010 Nov; 9(4):258-69. PubMed ID: 21309300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthropometry-driven block setting improves starting block performance in sprinters.
    Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C
    PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the track and field sprint start through a functional analysis of the external force features which contribute to higher levels of block phase performance.
    Bezodis NE; Walton SP; Nagahara R
    J Sports Sci; 2019 Mar; 37(5):560-567. PubMed ID: 30306822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sprint start kinematics during competition in elite and world-class male and female sprinters.
    Ciacci S; Merni F; Bartolomei S; Di Michele R
    J Sports Sci; 2017 Jul; 35(13):1270-1278. PubMed ID: 27540875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters.
    Bezodis IN; Cowburn J; Brazil A; Richardson R; Wilson C; Exell TA; Irwin G
    Sports Biomech; 2020 Apr; 19(2):189-200. PubMed ID: 29768121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis I; Irwin G
    J Sports Sci; 2017 Aug; 35(16):1629-1635. PubMed ID: 27598715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Biomechanics of the Track and Field Sprint Start: A Narrative Review.
    Bezodis NE; Willwacher S; Salo AIT
    Sports Med; 2019 Sep; 49(9):1345-1364. PubMed ID: 31209732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration.
    Wild JJ; Bezodis IN; North JS; Bezodis NE
    Eur J Sport Sci; 2018 Nov; 18(10):1327-1337. PubMed ID: 29996724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of a Wide Stance on Block Start Performance in Sprint Running.
    Otsuka M; Kurihara T; Isaka T
    PLoS One; 2015; 10(11):e0142230. PubMed ID: 26544719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical Performance Factors in the Track and Field Sprint Start: A Systematic Review.
    Valamatos MJ; Abrantes JM; Carnide F; Valamatos MJ; Monteiro CP
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sprint Acceleration Mechanics in Masters Athletes.
    Pantoja PD; Saez DE Villarreal E; Brisswalter J; Peyré-Tartaruga LA; Morin JB
    Med Sci Sports Exerc; 2016 Dec; 48(12):2469-2476. PubMed ID: 27414690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running.
    Otsuka M; Shim JK; Kurihara T; Yoshioka S; Nokata M; Isaka T
    J Appl Biomech; 2014 Jun; 30(3):390-400. PubMed ID: 24615252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
    Mirkov DM; Knezevic OM; Garcia-Ramos A; Čoh M; Šarabon N
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sprint Running Performance and Technique Changes in Athletes During Periodized Training: An Elite Training Group Case Study.
    Bezodis IN; Kerwin DG; Cooper SM; Salo AIT
    Int J Sports Physiol Perform; 2018 Jul; 13(6):755-762. PubMed ID: 29140147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion.
    Rabita G; Dorel S; Slawinski J; Sàez-de-Villarreal E; Couturier A; Samozino P; Morin JB
    Scand J Med Sci Sports; 2015 Oct; 25(5):583-94. PubMed ID: 25640466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces.
    Colyer SL; Nagahara R; Takai Y; Salo AIT
    Scand J Med Sci Sports; 2018 Dec; 28(12):2527-2535. PubMed ID: 30230037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Which starting style is faster in sprint running--standing or crouch start?
    Salo A; Bezodis I
    Sports Biomech; 2004 Jan; 3(1):43-53. PubMed ID: 15079987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic alterations due to different loading schemes in early acceleration sprint performance from starting blocks.
    Maulder PS; Bradshaw EJ; Keogh JW
    J Strength Cond Res; 2008 Nov; 22(6):1992-2002. PubMed ID: 18978610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of block start performance without arm forces or by kinematics-only methods.
    Otsuka M; Potthast W; Willwacher S; Goldmann JP; Kurihara T; Isaka T
    Sports Biomech; 2019 Jun; 18(3):229-244. PubMed ID: 30990124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.