These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Size control of giant unilamellar vesicles prepared from inverted emulsion droplets. Nishimura K; Suzuki H; Toyota T; Yomo T J Colloid Interface Sci; 2012 Jun; 376(1):119-25. PubMed ID: 22444482 [TBL] [Abstract][Full Text] [Related]
4. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588 [TBL] [Abstract][Full Text] [Related]
5. Automated formation of multicomponent-encapuslating vesosomes using continuous flow microcentrifugation. Jang H; Hu PC; Jung S; Kim WY; Kim SM; Malmstadt N; Jeon TJ Biotechnol J; 2013 Nov; 8(11):1341-6. PubMed ID: 23894035 [TBL] [Abstract][Full Text] [Related]
6. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Stachowiak JC; Richmond DL; Li TH; Brochard-Wyart F; Fletcher DA Lab Chip; 2009 Jul; 9(14):2003-9. PubMed ID: 19568667 [TBL] [Abstract][Full Text] [Related]
7. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890 [TBL] [Abstract][Full Text] [Related]
8. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models. Tivony R; Fletcher M; Al Nahas K; Keyser UF ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic fabrication of asymmetric giant lipid vesicles. Hu PC; Li S; Malmstadt N ACS Appl Mater Interfaces; 2011 May; 3(5):1434-40. PubMed ID: 21449588 [TBL] [Abstract][Full Text] [Related]
10. Dynamical formation of lipid bilayer vesicles from lipid-coated droplets across a planar monolayer at an oil/water interface. Ito H; Yamanaka T; Kato S; Hamada T; Takagi M; Ichikawa M; Yoshikawa K Soft Matter; 2013 Oct; 9(40):9539-47. PubMed ID: 26029760 [TBL] [Abstract][Full Text] [Related]
11. Functionalized Vesicles by Microfluidic Device. Vallejo D; Lee SH; Lee A Methods Mol Biol; 2017; 1572():489-510. PubMed ID: 28299707 [TBL] [Abstract][Full Text] [Related]
12. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots. Park YH; Lee DH; Um E; Park JK Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008 [TBL] [Abstract][Full Text] [Related]
14. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions. Maktabi S; Malmstadt N; Schertzer JW; Chiarot PR Biomicrofluidics; 2021 Mar; 15(2):024112. PubMed ID: 33912267 [TBL] [Abstract][Full Text] [Related]
15. Optimization of the Inverted Emulsion Method for High-Yield Production of Biomimetic Giant Unilamellar Vesicles. Moga A; Yandrapalli N; Dimova R; Robinson T Chembiochem; 2019 Oct; 20(20):2674-2682. PubMed ID: 31529570 [TBL] [Abstract][Full Text] [Related]
17. Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: experimental verification with the potassium channel KcsA. Yanagisawa M; Iwamoto M; Kato A; Yoshikawa K; Oiki S J Am Chem Soc; 2011 Aug; 133(30):11774-9. PubMed ID: 21702488 [TBL] [Abstract][Full Text] [Related]
19. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology. Matosevic S Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929 [TBL] [Abstract][Full Text] [Related]