These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 21309972)
1. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Burkart S; Manderscheid R; Wittich KP; Löpmeier FJ; Weigel HJ Plant Biol (Stuttg); 2011 Mar; 13(2):258-69. PubMed ID: 21309972 [TBL] [Abstract][Full Text] [Related]
2. [Responses of agricultural crops of free-air CO2 enrichment]. Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686 [TBL] [Abstract][Full Text] [Related]
3. Canopy CO2 exchange of sugar beet under different CO2 concentrations and nitrogen supply: results from a free-air CO2 enrichment study. Burkart S; Manderscheid R; Weigel HJ Plant Biol (Stuttg); 2009 Nov; 11 Suppl 1():109-23. PubMed ID: 19778375 [TBL] [Abstract][Full Text] [Related]
4. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. Shimono H; Nakamura H; Hasegawa T; Okada M Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676 [TBL] [Abstract][Full Text] [Related]
5. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040 [TBL] [Abstract][Full Text] [Related]
6. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. Zeppel MJ; Lewis JD; Medlyn B; Barton CV; Duursma RA; Eamus D; Adams MA; Phillips N; Ellsworth DS; Forster MA; Tissue DT Tree Physiol; 2011 Sep; 31(9):932-44. PubMed ID: 21616926 [TBL] [Abstract][Full Text] [Related]
7. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339 [TBL] [Abstract][Full Text] [Related]
8. Changes in soil C-isotopic composition in an agroecosystem under Free Air Carbon dioxide Enrichment (FACE) treatment during a crop rotation period. Giesemann A Rapid Commun Mass Spectrom; 2005; 19(11):1373-80. PubMed ID: 15880658 [TBL] [Abstract][Full Text] [Related]
9. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Bobich EG; Barron-Gafford GA; Rascher KG; Murthy R Tree Physiol; 2010 Jul; 30(7):866-75. PubMed ID: 20462939 [TBL] [Abstract][Full Text] [Related]
10. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Möller M; Alchanatis V; Cohen Y; Meron M; Tsipris J; Naor A; Ostrovsky V; Sprintsin M; Cohen S J Exp Bot; 2007; 58(4):827-38. PubMed ID: 16968884 [TBL] [Abstract][Full Text] [Related]
11. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations? Wheeler RM; Mackowiak CL; Yorio NC; Sager JC Ann Bot; 1999 Mar; 83(3):243-51. PubMed ID: 11541549 [TBL] [Abstract][Full Text] [Related]
12. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Bunce JA Oecologia; 2004 Jun; 140(1):1-10. PubMed ID: 14557864 [TBL] [Abstract][Full Text] [Related]
13. Soil carbon isotopic composition and soil carbon content in an agroecosystem during six years of Free Air Carbon dioxide Enrichment (FACE). Giesemann A; Weigel HJ Isotopes Environ Health Stud; 2008 Dec; 44(4):349-63. PubMed ID: 19061066 [TBL] [Abstract][Full Text] [Related]
14. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Zeppel M; Tissue D; Taylor D; Macinnis-Ng C; Eamus D Tree Physiol; 2010 Aug; 30(8):988-1000. PubMed ID: 20566582 [TBL] [Abstract][Full Text] [Related]
15. Tillage, cropping sequence, and nitrogen fertilization effects on dryland soil carbon dioxide emission and carbon content. Sainju UM; Jabro JD; Caesar-Tonthat T J Environ Qual; 2010; 39(3):935-45. PubMed ID: 20400589 [TBL] [Abstract][Full Text] [Related]
16. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization. Domec JC; Palmroth S; Ward E; Maier CA; Thérézien M; Oren R Plant Cell Environ; 2009 Nov; 32(11):1500-12. PubMed ID: 19558405 [TBL] [Abstract][Full Text] [Related]
17. Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA. Wharton S; Schroeder M; Bible K; Falk M; Paw U KT Tree Physiol; 2009 Aug; 29(8):959-74. PubMed ID: 19502614 [TBL] [Abstract][Full Text] [Related]
18. Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation. Calfapietra C; Tulva I; Eensalu E; Perez M; De Angelis P; Scarascia-Mugnozza G; Kull O Environ Pollut; 2005 Oct; 137(3):525-35. PubMed ID: 16005764 [TBL] [Abstract][Full Text] [Related]
19. Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress. Nason MA; Farrar J; Bartlett D Pest Manag Sci; 2007 Dec; 63(12):1191-200. PubMed ID: 17912684 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms underlying the amelioration of O3-induced damage by elevated atmospheric concentrations of CO2. Cardoso-Vilhena J; Balaguer L; Eamus D; Ollerenshaw J; Barnes J J Exp Bot; 2004 Mar; 55(397):771-81. PubMed ID: 14966219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]