These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21310179)

  • 1. An extended model of intracranial latency facilitates non-invasive detection of cerebrovascular changes.
    Asgari S; Subudhi AW; Roach RC; Liebeskind DS; Bergsneider M; Hu X
    J Neurosci Methods; 2011 Apr; 197(1):171-9. PubMed ID: 21310179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of cerebral blood flow regulation explained using a lumped parameter model.
    Olufsen MS; Nadim A; Lipsitz LA
    Am J Physiol Regul Integr Comp Physiol; 2002 Feb; 282(2):R611-22. PubMed ID: 11792673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring cerebrovascular changes from latencies of systemic and intracranial pulses: a model-based latency subtraction algorithm.
    Hu X; Subudhi AW; Xu P; Asgari S; Roach RC; Bergsneider M
    J Cereb Blood Flow Metab; 2009 Apr; 29(4):688-97. PubMed ID: 19142194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The critical closing pressure of the cerebral circulation.
    Panerai RB
    Med Eng Phys; 2003 Oct; 25(8):621-32. PubMed ID: 12900178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of dynamic cerebral autoregulation using an ARX model based on arterial blood pressure and middle cerebral artery velocity simulation.
    Liu Y; Allen R
    Med Biol Eng Comput; 2002 Sep; 40(5):600-5. PubMed ID: 12452423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation and identification of parameters in a lumped cerebrovascular model.
    Pope SR; Ellwein LM; Zapata CL; Novak V; Kelley CT; Olufsen MS
    Math Biosci Eng; 2009 Jan; 6(1):93-115. PubMed ID: 19292510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latency relationships between cerebral blood flow velocity and intracranial pressure.
    Asgari S; Vespa PM; Bergsneider M; Hu X
    Acta Neurochir Suppl; 2012; 114():5-9. PubMed ID: 22327656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed cerebrovascular autoregulatory response to ergometer exercise in normotensive elderly humans.
    Heckmann JG; Brown CM; Cheregi M; Hilz MJ; Neundörfer B
    Cerebrovasc Dis; 2003; 16(4):423-9. PubMed ID: 13130185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of cerebrovascular and cardiovascular responses to lower body negative pressure as a test of cerebral autoregulation.
    Brown CM; Dütsch M; Hecht MJ; Neundörfer B; Hilz MJ
    J Neurol Sci; 2003 Apr; 208(1-2):71-8. PubMed ID: 12639728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of computerized rheoencephalography in the assessment of normal pressure hydrocephalus.
    Traczewski W; Moskala M; Kruk D; Gościński I; Szwabowska D; Polak J; Wielgosz K
    J Neurotrauma; 2005 Jul; 22(7):836-43. PubMed ID: 16004585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing cerebrovascular autoregulation from critical closing pressure and resistance area product during upright posture in aging and hypertension.
    Robertson AD; Edgell H; Hughson RL
    Am J Physiol Heart Circ Physiol; 2014 Jul; 307(2):H124-33. PubMed ID: 24858843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An effective model of cerebrovascular pressure reactivity and blood flow autoregulation.
    Acosta S; Penny DJ; Brady KM; Rusin CG
    Microvasc Res; 2018 Jan; 115():34-43. PubMed ID: 28847705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans.
    Zhang R; Zuckerman JH; Levine BD
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1848-55. PubMed ID: 10843881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of dynamic cerebral autoregulation based on spontaneous fluctuations in arterial blood pressure and intracranial pressure.
    Panerai RB; Hudson V; Fan L; Mahony P; Yeoman PM; Hope T; Evans DH
    Physiol Meas; 2002 Feb; 23(1):59-72. PubMed ID: 11876242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study.
    Ursino M; Giulioni M
    Med Eng Phys; 2003 Oct; 25(8):655-66. PubMed ID: 12900181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The role of the dopaminergic component in the autoregulatory reaction of the cerebral vessels].
    Gaevyĭ MD; Pchelintseva TR; Vereshchagin VK; Migruev RR
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jun; 75(6):793-7. PubMed ID: 2806646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracranial pressure pulse amplitude during changes in head elevation: a new parameter for determining optimum cerebral perfusion pressure?
    Mahfoud F; Beck J; Raabe A
    Acta Neurochir (Wien); 2010 Mar; 152(3):443-50. PubMed ID: 19806306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsatile cerebral perfusion pressure: significance for cerebral blood flow.
    Piper IR; Chan KH; Miller JD
    J Neurosurg Anesthesiol; 1994 Jul; 6(3):223-5. PubMed ID: 8081103
    [No Abstract]   [Full Text] [Related]  

  • 20. Development of a cerebral circulation model for the automatic control of brain physiology.
    Utsuki T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1890-3. PubMed ID: 26736651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.