These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 213102)
1. Fluorescence and chemical studies on the interaction of Escherichia coli DNA-binding protein with single-stranded DNA. Bandyopadhyay PK; Wu CW Biochemistry; 1978 Sep; 17(19):4078-85. PubMed ID: 213102 [TBL] [Abstract][Full Text] [Related]
2. The fluorescence decay of tryptophan residues in native and denatured proteins. Grinvald A; Steinberg IZ Biochim Biophys Acta; 1976 Apr; 427(2):663-78. PubMed ID: 5134 [TBL] [Abstract][Full Text] [Related]
3. DNA "melting" proteins. III. Fluorescence "mapping" of the nucleic acid binding site of bacteriophage T4 gene 32-protein. Kelly RC; von Hippel PH J Biol Chem; 1976 Nov; 251(22):7229-39. PubMed ID: 791946 [TBL] [Abstract][Full Text] [Related]
5. R150A mutant of F TraI relaxase domain: reduced affinity and specificity for single-stranded DNA and altered fluorescence anisotropy of a bound labeled oligonucleotide. Harley MJ; Toptygin D; Troxler T; Schildbach JF Biochemistry; 2002 May; 41(20):6460-8. PubMed ID: 12009909 [TBL] [Abstract][Full Text] [Related]
6. Conformation and DNA binding properties of a single-stranded DNA binding region of sigma 70 subunit from Escherichia coli RNA polymerase are modulated by an interaction with the core enzyme. Callaci S; Heyduk T Biochemistry; 1998 Mar; 37(10):3312-20. PubMed ID: 9521651 [TBL] [Abstract][Full Text] [Related]
8. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies. Lakowicz JR; Freshwater G; Weber G Biophys J; 1980 Oct; 32(1):591-601. PubMed ID: 7248463 [TBL] [Abstract][Full Text] [Related]
9. [Ricin structure: the study by the fluorescence quenching method]. Bushueva TL; Tonevitskiĭ AG; Burshteĭn EA Mol Biol (Mosk); 1990; 24(3):614-20. PubMed ID: 2402231 [TBL] [Abstract][Full Text] [Related]
10. Triplet state properties of tryptophan residues in complexes of mutated Escherichia coli single-stranded DNA binding proteins with single-stranded polynucleotides. Tsao DH; Casas-Finet JR; Maki AH; Chase JW Biophys J; 1989 May; 55(5):927-36. PubMed ID: 2655732 [TBL] [Abstract][Full Text] [Related]
11. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching. Flowers S; Biswas EE; Biswas SB Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change. Weitzman C; Consler TG; Kaback HR Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627 [TBL] [Abstract][Full Text] [Related]
13. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay. Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506 [TBL] [Abstract][Full Text] [Related]
14. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants. Axelsen PH; Bajzer Z; Prendergast FG; Cottam PF; Ho C Biophys J; 1991 Sep; 60(3):650-9. PubMed ID: 1932553 [TBL] [Abstract][Full Text] [Related]
15. Myb-DNA recognition: role of tryptophan residues and structural changes of the minimal DNA binding domain of c-Myb. Zargarian L; Le Tilly V; Jamin N; Chaffotte A; Gabrielsen OS; Toma F; Alpert B Biochemistry; 1999 Feb; 38(6):1921-9. PubMed ID: 10026273 [TBL] [Abstract][Full Text] [Related]
16. The role of aromatic side chain residues in micelle binding by pancreatic colipase. Fluorescence studies of the porcine and equine proteins. McIntyre JC; Hundley P; Behnke WD Biochem J; 1987 Aug; 245(3):821-9. PubMed ID: 3663193 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence resolution of the intrinsic tryptophan residues of bovine protein tyrosyl phosphatase. Pokalsky C; Wick P; Harms E; Lytle FE; Van Etten RL J Biol Chem; 1995 Feb; 270(8):3809-15. PubMed ID: 7876123 [TBL] [Abstract][Full Text] [Related]
18. Structure and stability of gamma-crystallins: tryptophan, tyrosine, and cysteine accessibility. Mandal K; Chakrabarti B Biochemistry; 1988 Jun; 27(12):4564-71. PubMed ID: 3166999 [TBL] [Abstract][Full Text] [Related]
19. A type II DNA-binding protein genetically engineered for fluorescence spectroscopy: the "arm" of transcription factor 1 binds in the DNA grooves. Härd T; Sayre MH; Geiduschek EP; Kearns DR Biochemistry; 1989 Apr; 28(7):2813-9. PubMed ID: 2742813 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues. Isaev-Ivanov VV; Kozlov MG; Baitin DM; Masui R; Kuramitsu S; Lanzov VA Arch Biochem Biophys; 2000 Apr; 376(1):124-40. PubMed ID: 10729198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]