These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21310458)

  • 41. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.
    Fu B; Zhang J; Fan J; Wang J; Liu H
    Water Sci Technol; 2012; 65(5):883-9. PubMed ID: 22339023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison between sequential and simultaneous application of activated carbon with membrane bioreactor for trace organic contaminant removal.
    Nguyen LN; Hai FI; Kang J; Nghiem LD; Price WE; Guo W; Ngo HH; Tung KL
    Bioresour Technol; 2013 Feb; 130():412-7. PubMed ID: 23313687
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Population dynamics in bioaugmented membrane bioreactor for treatment of bromoamine acid wastewater.
    Qu YY; Zhou JT; Wang J; Xing LL; Jiang N; Gou M; Salah Uddin M
    Bioresour Technol; 2009 Jan; 100(1):244-8. PubMed ID: 18650081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced biodegradation of Reactive Violet 5R manufacturing wastewater using down flow fixed film bioreactor.
    Sheth N; Dave S
    Bioresour Technol; 2010 Nov; 101(22):8627-31. PubMed ID: 20638273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal.
    Li X; Hai FI; Nghiem LD
    Bioresour Technol; 2011 May; 102(9):5319-24. PubMed ID: 21145232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater.
    Kuo DH; Simmons FJ; Blair S; Hart E; Rose JB; Xagoraraki I
    Water Res; 2010 Mar; 44(5):1520-30. PubMed ID: 19944439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of granular sludge for textile wastewater treatment.
    Muda K; Aris A; Salim MR; Ibrahim Z; Yahya A; van Loosdrecht MC; Ahmad A; Nawahwi MZ
    Water Res; 2010 Aug; 44(15):4341-50. PubMed ID: 20580402
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controlled operation of a membrane SBR for inhibitory wastewater treatment.
    Vargas A; Sandoval JL; Buitrón G
    Water Sci Technol; 2009; 60(3):655-61. PubMed ID: 19657160
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anaerobic treatment of real textile wastewater with a fluidized bed reactor.
    Sen S; Demirer GN
    Water Res; 2003 Apr; 37(8):1868-78. PubMed ID: 12697230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater.
    Somasiri W; Li XF; Ruan WQ; Jian C
    Bioresour Technol; 2008 Jun; 99(9):3692-9. PubMed ID: 17719776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Feasibility of submerged anaerobic membrane bioreactor (SAMBR) for treatment of low-strength wastewater.
    Huang Z; Ong SL; Ng HY
    Water Sci Technol; 2008; 58(10):1925-31. PubMed ID: 19039171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterisation of microbial flocs formed from raw textile wastewater in aerobic biofilm reactor (ABR).
    Ibrahim Z; Amin MF; Yahya A; Aris A; Umor NA; Muda K; Sofian NS
    Water Sci Technol; 2009; 60(3):683-8. PubMed ID: 19657163
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria.
    Georgiou D; Aivasidis A
    J Hazard Mater; 2006 Jul; 135(1-3):372-7. PubMed ID: 16423456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Decolorization of azo dyes with Enterobacter agglomerans immobilized in different supports by using fluidized bed bioreactor.
    Moutaouakkil A; Zeroual Y; Dzayri FZ; Talbi M; Lee K; Blaghen M
    Curr Microbiol; 2004 Feb; 48(2):124-9. PubMed ID: 15057480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane bio-reactor for advanced textile wastewater treatment and reuse.
    Lubello C; Gori R
    Water Sci Technol; 2004; 50(2):113-9. PubMed ID: 15344781
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Treatment of the azo dye direct blue 2 in a biological aerated filter under anaerobic/aerobic conditions.
    González-Martínez S; Piña-Mondragón S; González-Barceló O
    Water Sci Technol; 2010; 61(3):789-96. PubMed ID: 20150716
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of decolorization of textile wastewater in an anaerobic/aerobic biological activated carbon system (A/A BAC).
    Pasukphun N; Vinitnantharat S; Gheewala S
    Pak J Biol Sci; 2010 Apr; 13(7):316-24. PubMed ID: 20836286
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative performance between intermittently cyclic activated sludge-membrane bioreactor and anoxic/aerobic-membrane bioreactor.
    Wang YL; Yu SL; Shi WX; Bao RL; Zhao Q; Zuo XT
    Bioresour Technol; 2009 Sep; 100(17):3877-81. PubMed ID: 19362820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Membrane bioreactors as core technology for water loop closure in a maltery.
    De Wever H; Boënne W; Danau M; Vanderspiegel N; Lambert K; Hardy K; Limbos J
    Water Sci Technol; 2008; 57(11):1805-8. PubMed ID: 18547934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.