These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 21311034)
1. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Cecchini NM; Monteoliva MI; Alvarez ME Plant Physiol; 2011 Apr; 155(4):1947-59. PubMed ID: 21311034 [TBL] [Abstract][Full Text] [Related]
2. Context of action of proline dehydrogenase (ProDH) in the Hypersensitive Response of Arabidopsis. Monteoliva MI; Rizzi YS; Cecchini NM; Hajirezaei MR; Alvarez ME BMC Plant Biol; 2014 Jan; 14():21. PubMed ID: 24410747 [TBL] [Abstract][Full Text] [Related]
3. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. Miller G; Honig A; Stein H; Suzuki N; Mittler R; Zilberstein A J Biol Chem; 2009 Sep; 284(39):26482-92. PubMed ID: 19635803 [TBL] [Abstract][Full Text] [Related]
4. Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Senthil-Kumar M; Mysore KS Plant Cell Environ; 2012 Jul; 35(7):1329-43. PubMed ID: 22321246 [TBL] [Abstract][Full Text] [Related]
5. Proline dehydrogenase is a positive regulator of cell death in different kingdoms. Cecchini NM; Monteoliva MI; Alvarez ME Plant Signal Behav; 2011 Aug; 6(8):1195-7. PubMed ID: 21757996 [TBL] [Abstract][Full Text] [Related]
6. P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions. Rizzi YS; Monteoliva MI; Fabro G; Grosso CL; Laróvere LE; Alvarez ME Front Plant Sci; 2015; 6():572. PubMed ID: 26284090 [TBL] [Abstract][Full Text] [Related]
8. Δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation. Yao Z; Zou C; Zhou H; Wang J; Lu L; Li Y; Chen B PLoS One; 2013; 8(9):e73483. PubMed ID: 24039956 [TBL] [Abstract][Full Text] [Related]
9. First evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions. Sanyal N; Arentson BW; Luo M; Tanner JJ; Becker DF J Biol Chem; 2015 Jan; 290(4):2225-34. PubMed ID: 25492892 [TBL] [Abstract][Full Text] [Related]
10. Regulation of levels of proline as an osmolyte in plants under water stress. Yoshiba Y; Kiyosue T; Nakashima K; Yamaguchi-Shinozaki K; Shinozaki K Plant Cell Physiol; 1997 Oct; 38(10):1095-102. PubMed ID: 9399433 [TBL] [Abstract][Full Text] [Related]
11. The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Deuschle K; Funck D; Forlani G; Stransky H; Biehl A; Leister D; van der Graaff E; Kunze R; Frommer WB Plant Cell; 2004 Dec; 16(12):3413-25. PubMed ID: 15548746 [TBL] [Abstract][Full Text] [Related]
12. Pyrroline-5-carboxylate dehydrogenase is an essential enzyme for proline dehydrogenase function during dark-induced senescence in Arabidopsis thaliana. Zheng Y; Cabassa-Hourton C; Planchais S; Crilat E; Clément G; Dacher M; Durand N; Bordenave-Jacquemin M; Guivarc'h A; Dourmap C; Carol P; Lebreton S; Savouré A Plant Cell Environ; 2023 Mar; 46(3):901-917. PubMed ID: 36583533 [TBL] [Abstract][Full Text] [Related]
13. Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformans requires an intact proline catabolism pathway. Lee IR; Lui EY; Chow EW; Arras SD; Morrow CA; Fraser JA Genetics; 2013 Jun; 194(2):421-33. PubMed ID: 23564202 [TBL] [Abstract][Full Text] [Related]
14. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Fabro G; Kovács I; Pavet V; Szabados L; Alvarez ME Mol Plant Microbe Interact; 2004 Apr; 17(4):343-50. PubMed ID: 15077666 [TBL] [Abstract][Full Text] [Related]
15. A nuclear gene encoding mitochondrial Delta-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Deuschle K; Funck D; Hellmann H; Däschner K; Binder S; Frommer WB Plant J; 2001 Aug; 27(4):345-56. PubMed ID: 11532180 [TBL] [Abstract][Full Text] [Related]
16. The role of delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDh) in the Pacific white shrimp (Litopenaeus vannamei) during biotic and abiotic stress. Liang Q; Wu X; Yang P; Kong J; Wei W; Qiao X; Liu Y; Wang W Aquat Toxicol; 2019 Mar; 208():1-11. PubMed ID: 30592983 [TBL] [Abstract][Full Text] [Related]
17. ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Satoh R; Nakashima K; Seki M; Shinozaki K; Yamaguchi-Shinozaki K Plant Physiol; 2002 Oct; 130(2):709-19. PubMed ID: 12376638 [TBL] [Abstract][Full Text] [Related]
18. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Qamar A; Mysore KS; Senthil-Kumar M Front Plant Sci; 2015; 6():503. PubMed ID: 26217357 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Sharma S; Verslues PE Plant Cell Environ; 2010 Nov; 33(11):1838-51. PubMed ID: 20545884 [TBL] [Abstract][Full Text] [Related]
20. Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. Funck D; Eckard S; Müller G BMC Plant Biol; 2010 Apr; 10():70. PubMed ID: 20403182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]