BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21311595)

  • 1. Wide-Field Multi-Parameter FLIM: long-term minimal invasive observation of proteins in living cells.
    Vitali M; Picazo F; Prokazov Y; Duci A; Turbin E; Götze C; Llopis J; Hartig R; Visser AJ; Zuschratter W
    PLoS One; 2011 Feb; 6(2):e15820. PubMed ID: 21311595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative comparison of different fluorescent protein couples for fast FRET-FLIM acquisition.
    Padilla-Parra S; Audugé N; Lalucque H; Mevel JC; Coppey-Moisan M; Tramier M
    Biophys J; 2009 Oct; 97(8):2368-76. PubMed ID: 19843469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence lifetime imaging microscopy for quantitative biological imaging.
    Chen LC; Lloyd WR; Chang CW; Sud D; Mycek MA
    Methods Cell Biol; 2013; 114():457-88. PubMed ID: 23931519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells.
    Padilla-Parra S; Audugé N; Coppey-Moisan M; Tramier M
    Biophys J; 2008 Sep; 95(6):2976-88. PubMed ID: 18539634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells.
    Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M
    Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein localization in living cells and tissues using FRET and FLIM.
    Chen Y; Mills JD; Periasamy A
    Differentiation; 2003 Dec; 71(9-10):528-41. PubMed ID: 14686950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live-cell FLIM-FRET using a commercially available system.
    Castellani CM; Torres-Ocampo AP; Breffke J; White AB; Chambers JJ; Stratton MM; Maresca TJ
    Methods Cell Biol; 2020; 158():63-89. PubMed ID: 32423651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative real-time imaging of intracellular FRET biosensor dynamics using rapid multi-beam confocal FLIM.
    Levitt JA; Poland SP; Krstajic N; Pfisterer K; Erdogan A; Barber PR; Parsons M; Henderson RK; Ameer-Beg SM
    Sci Rep; 2020 Mar; 10(1):5146. PubMed ID: 32198437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasible add-on upgrade on a commercial two-photon FLIM microscope for optimal FLIM-FRET imaging of CFP-YFP pairs.
    Xu L; Wang L; Zhang Z; Huang ZL
    J Fluoresc; 2013 May; 23(3):543-9. PubMed ID: 23456419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photobleaching-based quantitative analysis of fluorescence resonance energy transfer inside single living cell.
    Wang L; Chen T; Qu J; Wei X
    J Fluoresc; 2010 Jan; 20(1):27-35. PubMed ID: 19588234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence lifetime imaging microscopy (FLIM).
    van Munster EB; Gadella TW
    Adv Biochem Eng Biotechnol; 2005; 95():143-75. PubMed ID: 16080268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Changes in Keap1-Nrf2 Protein Complex Conformation in Individual Cells by FLIM-FRET.
    Dikovskaya D; Dinkova-Kostova AT
    Curr Protoc Toxicol; 2020 Sep; 85(1):e96. PubMed ID: 32786061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM).
    Fäßler F; Pimpl P
    Methods Mol Biol; 2017; 1662():159-170. PubMed ID: 28861826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-field fluorescence lifetime imaging with multi-anode detectors.
    Hartig R; Prokazov Y; Turbin E; Zuschratter W
    Methods Mol Biol; 2014; 1076():457-80. PubMed ID: 24108639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal Data Set Reduction Based on D-Optimality for Quantitative FLIM-FRET Imaging.
    Omer T; Intes X; Hahn J
    PLoS One; 2015; 10(12):e0144421. PubMed ID: 26658308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging.
    Zhao M; Li Y; Peng L
    Opt Express; 2014 Sep; 22(19):23073-85. PubMed ID: 25321778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of phasor plot and autofluorescence correction for study of heterogeneous cell population.
    Szmacinski H; Toshchakov V; Lakowicz JR
    J Biomed Opt; 2014 Apr; 19(4):046017. PubMed ID: 24770662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical principles and practical considerations for fluorescence resonance energy transfer microscopy.
    Cardullo RA
    Methods Cell Biol; 2013; 114():441-56. PubMed ID: 23931518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell FRET analysis for the identification of optimal FRET-pairs in Bacillus subtilis using a prototype MEM-FLIM system.
    Detert Oude Weme RG; Kovács ÁT; de Jong SJ; Veening JW; Siebring J; Kuipers OP
    PLoS One; 2015; 10(4):e0123239. PubMed ID: 25886351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.