These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21312028)
1. Using chemical fractionation to evaluate the phytoextraction of cadmium by switchgrass from Cd-contaminated soils. Chen BC; Lai HY; Lee DY; Juang KW Ecotoxicology; 2011 Mar; 20(2):409-18. PubMed ID: 21312028 [TBL] [Abstract][Full Text] [Related]
2. Influence of endophytic root bacteria on the growth, cadmium tolerance and uptake of switchgrass (Panicum virgatum L.). Afzal S; Begum N; Zhao H; Fang Z; Lou L; Cai Q J Appl Microbiol; 2017 Aug; 123(2):498-510. PubMed ID: 28581636 [TBL] [Abstract][Full Text] [Related]
3. Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils. Wang Q; Gu M; Ma X; Zhang H; Wang Y; Cui J; Gao W; Gui J Environ Sci Pollut Res Int; 2015 Nov; 22(21):16758-71. PubMed ID: 26092360 [TBL] [Abstract][Full Text] [Related]
4. Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Aderholt M; Vogelien DL; Koether M; Greipsson S Chemosphere; 2017 May; 175():85-96. PubMed ID: 28211339 [TBL] [Abstract][Full Text] [Related]
5. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Chen BC; Lai HY; Juang KW Ecotoxicol Environ Saf; 2012 Jun; 80():393-400. PubMed ID: 22541831 [TBL] [Abstract][Full Text] [Related]
6. Phytoremediation of Cd and Pb interactive polluted soils by switchgrass ( Guo Z; Gao Y; Cao X; Jiang W; Liu X; Liu Q; Chen Z; Zhou W; Cui J; Wang Q Int J Phytoremediation; 2019; 21(14):1486-1496. PubMed ID: 31342773 [TBL] [Abstract][Full Text] [Related]
7. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching. Shrestha P; Bellitürk K; Görres JH Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970575 [TBL] [Abstract][Full Text] [Related]
8. Cadmium uptake and transfer by Xue Z; Wu M; Hu H; Kianpoor Kalkhajeh Y Int J Phytoremediation; 2021; 23(10):1052-1060. PubMed ID: 33491471 [No Abstract] [Full Text] [Related]
9. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Saffari VR; Saffari M Int J Phytoremediation; 2020; 22(11):1204-1214. PubMed ID: 32329354 [TBL] [Abstract][Full Text] [Related]
10. Plant uptake and leaching potential upon application of amendments in soils spiked with heavy metals (Cd and Pb). Gul I; Manzoor M; Hashmi I; Bhatti MF; Kallerhoff J; Arshad M J Environ Manage; 2019 Nov; 249():109408. PubMed ID: 31513965 [TBL] [Abstract][Full Text] [Related]
11. Short-term effects of compost amendment on the fractionation of cadmium in soil and cadmium accumulation in rice plants. Juang KW; Ho PC; Yu CH Environ Sci Pollut Res Int; 2012 Jun; 19(5):1696-708. PubMed ID: 22161300 [TBL] [Abstract][Full Text] [Related]
12. Cadmium Isotopic Fractionation in the Soil-Plant System during Repeated Phytoextraction with a Cadmium Hyperaccumulating Plant Species. Zhou JW; Li Z; Liu MS; Yu HM; Wu LH; Huang F; Luo YM; Christie P Environ Sci Technol; 2020 Nov; 54(21):13598-13609. PubMed ID: 33079537 [TBL] [Abstract][Full Text] [Related]
13. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Sun Y; Wen C; Liang X; He C Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Chelating Agents Used in Phytoextraction by Switchgrass of Lead Contaminated Soil. Hart G; Koether M; McElroy T; Greipsson S Plants (Basel); 2022 Apr; 11(8):. PubMed ID: 35448740 [TBL] [Abstract][Full Text] [Related]
15. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Wang K; Liu Y; Song Z; Wang D; Qiu W Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449 [TBL] [Abstract][Full Text] [Related]
16. Phytoextraction of cadmium-contaminated soil by Celosia argentea Linn.: A long-term field study. Yu G; Jiang P; Fu X; Liu J; Sunahara GI; Chen Z; Xiao H; Lin F; Wang X Environ Pollut; 2020 Nov; 266(Pt 1):115408. PubMed ID: 32829173 [TBL] [Abstract][Full Text] [Related]
17. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium. Wong JW; Wong WW; Wei Z; Jagadeesan H Sci Total Environ; 2004 May; 324(1-3):235-46. PubMed ID: 15081709 [TBL] [Abstract][Full Text] [Related]
18. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA. Jalali M; Khanlari ZV Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454 [TBL] [Abstract][Full Text] [Related]
19. Exploration of Cd transformations in Cd spiked and EDTA-chelated soil for phytoextraction by Brassica species. Dhaliwal SS; Sharma V; Shukla AK; Taneja PK; Kaur L; Verma V; Kaur M; Kaur J Environ Geochem Health; 2023 Dec; 45(12):8897-8909. PubMed ID: 35484423 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Phytoextraction for Co-contaminated Soil with Cd and Pb by Ryegrass (Lolium perenne L.). Zhang Y; Li F; Xu W; Ren J; Chen S; Shen K; Long Z Bull Environ Contam Toxicol; 2019 Jul; 103(1):147-154. PubMed ID: 31250070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]