BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21312340)

  • 21. Mechanical characterization of collagen-glycosaminoglycan scaffolds.
    Harley BA; Leung JH; Silva EC; Gibson LJ
    Acta Biomater; 2007 Jul; 3(4):463-74. PubMed ID: 17349829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine.
    Krishnakumar GS; Gostynska N; Dapporto M; Campodoni E; Montesi M; Panseri S; Tampieri A; Kon E; Marcacci M; Sprio S; Sandri M
    Int J Biol Macromol; 2018 Jan; 106():739-748. PubMed ID: 28827204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photochemical cross-linking for collagen-based scaffolds: a study on optical properties, mechanical properties, stability, and hematocompatibility.
    Chan BP; Hui TY; Chan OC; So KF; Lu W; Cheung KM; Salomatina E; Yaroslavsky A
    Tissue Eng; 2007 Jan; 13(1):73-85. PubMed ID: 17518582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled compaction with ruthenium-catalyzed photochemical cross-linking of fibrin-based engineered connective tissue.
    Syedain ZH; Bjork J; Sando L; Tranquillo RT
    Biomaterials; 2009 Dec; 30(35):6695-701. PubMed ID: 19782397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collagen type I and hyaluronic acid based hybrid scaffolds for heart valve tissue engineering.
    Nazir R; Bruyneel A; Carr C; Czernuszka J
    Biopolymers; 2019 Aug; 110(8):e23278. PubMed ID: 30958569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability.
    Chan KLS; Khankhel AH; Thompson RL; Coisman BJ; Wong KHK; Truslow JG; Tien J
    J Biomed Mater Res A; 2014 Sep; 102(9):3186-3195. PubMed ID: 24151175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical electrospun tendon-ligament bioinspired scaffolds induce changes in fibroblasts morphology under static and dynamic conditions.
    Sensini A; Cristofolini L; Zucchelli A; Focarete ML; Gualandi C; DE Mori A; Kao AP; Roldo M; Blunn G; Tozzi G
    J Microsc; 2020 Mar; 277(3):160-169. PubMed ID: 31339556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties.
    Baratéla FJC; Higa OZ; Dos Passos ED; de Queiroz AAA
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():72-79. PubMed ID: 28183666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crosslinked urethane doped polyester biphasic scaffolds: Potential for in vivo vascular tissue engineering.
    Dey J; Xu H; Nguyen KT; Yang J
    J Biomed Mater Res A; 2010 Nov; 95(2):361-70. PubMed ID: 20629026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.
    Ryan AJ; O'Brien FJ
    Biomaterials; 2015 Dec; 73():296-307. PubMed ID: 26431909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures.
    Yeo IS; Oh JE; Jeong L; Lee TS; Lee SJ; Park WH; Min BM
    Biomacromolecules; 2008 Apr; 9(4):1106-16. PubMed ID: 18327908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and modeling of dynamic multipolymer nanofibrous scaffolds.
    Baker BM; Nerurkar NL; Burdick JA; Elliott DM; Mauck RL
    J Biomech Eng; 2009 Oct; 131(10):101012. PubMed ID: 19831482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering.
    Grover CN; Cameron RE; Best SM
    J Mech Behav Biomed Mater; 2012 Jun; 10():62-74. PubMed ID: 22520419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation.
    Babrnáková J; Pavliňáková V; Brtníková J; Sedláček P; Prosecká E; Rampichová M; Filová E; Hearnden V; Vojtová L
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():236-246. PubMed ID: 30948058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds.
    Huang GP; Shanmugasundaram S; Masih P; Pandya D; Amara S; Collins G; Arinzeh TL
    J Biomed Mater Res A; 2015 Feb; 103(2):762-71. PubMed ID: 24828818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere.
    Fernandes-Silva S; Moreira-Silva J; Silva TH; Perez-Martin RI; Sotelo CG; Mano JF; Duarte AR; Reis RL
    Macromol Biosci; 2013 Nov; 13(11):1621-31. PubMed ID: 24039034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons.
    Ghodbane SA; Dunn MG
    J Biomed Mater Res A; 2016 Nov; 104(11):2685-92. PubMed ID: 27325579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of PU/PEGMA crosslinked hybrid scaffolds by in situ UV photopolymerization favoring human endothelial cells growth for vascular tissue engineering.
    Wang H; Feng Y; An B; Zhang W; Sun M; Fang Z; Yuan W; Khan M
    J Mater Sci Mater Med; 2012 Jun; 23(6):1499-510. PubMed ID: 22430593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.