BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 21314117)

  • 1. "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision.
    Kose R; Mitani I; Kasai W; Kondo T
    Biomacromolecules; 2011 Mar; 12(3):716-20. PubMed ID: 21314117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers.
    Kondo T; Kose R; Naito H; Kasai W
    Carbohydr Polym; 2014 Nov; 112():284-90. PubMed ID: 25129746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture.
    Nagashima A; Tsuji T; Kondo T
    Carbohydr Polym; 2016 Jan; 135():215-24. PubMed ID: 26453871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified Gluconacetobacter xylinus.
    Fang J; Kawano S; Tajima K; Kondo T
    Biomacromolecules; 2015 Oct; 16(10):3154-60. PubMed ID: 26360299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated patterns of bacterial movements based on their secreted cellulose nanofibers interacting interfacially with ordered chitin templates.
    Kondo T; Kasai W; Nojiri M; Hishikawa Y; Togawa E; Romanovicz D; Brown RM
    J Biosci Bioeng; 2012 Jul; 114(1):113-20. PubMed ID: 22578597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder.
    Kondo T; Kasai W
    J Biosci Bioeng; 2014 Oct; 118(4):482-7. PubMed ID: 24799259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers.
    Sano MB; Rojas AD; Gatenholm P; Davalos RV
    Ann Biomed Eng; 2010 Aug; 38(8):2475-84. PubMed ID: 20300846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.
    Lee CM; Gu J; Kafle K; Catchmark J; Kim SH
    Carbohydr Polym; 2015 Nov; 133():270-6. PubMed ID: 26344281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate.
    Ruka DR; Simon GP; Dean KM
    Carbohydr Polym; 2013 Feb; 92(2):1717-23. PubMed ID: 23399211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation.
    Mikkelsen D; Gidley MJ
    Methods Mol Biol; 2011; 715():197-208. PubMed ID: 21222086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust All-Cellulose Nanofiber Composite from Stack-Up Bacterial Cellulose Hydrogels via Self-Aggregation Forces.
    Li Z; Li X; Ren J; Wu B; Luo Q; Liu X; Pei C
    J Agric Food Chem; 2020 Mar; 68(9):2696-2701. PubMed ID: 32031789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision.
    Sun D; Yang J; Wang X
    Nanoscale; 2010 Feb; 2(2):287-92. PubMed ID: 20644807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites.
    Lee KY; Buldum G; Mantalaris A; Bismarck A
    Macromol Biosci; 2014 Jan; 14(1):10-32. PubMed ID: 23897676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose.
    Ruka DR; Simon GP; Dean KM
    Carbohydr Polym; 2012 Jun; 89(2):613-22. PubMed ID: 24750766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of nanocellulose in miniature-bioreactor: Optimization and characterization.
    Khazeni S; Hatamian-Zarmi A; Yazdian F; Mokhtari-Hosseini ZB; Ebrahimi-Hosseinzadeh B; Noorani B; Amoabedini G; Soudi MR
    Prep Biochem Biotechnol; 2017 Apr; 47(4):371-378. PubMed ID: 27824292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes.
    Yoon SH; Jin HJ; Kook MC; Pyun YR
    Biomacromolecules; 2006 Apr; 7(4):1280-4. PubMed ID: 16602750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524.
    Mikkelsen D; Flanagan BM; Dykes GA; Gidley MJ
    J Appl Microbiol; 2009 Aug; 107(2):576-83. PubMed ID: 19302295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the water holding capacity of microbial cellulose.
    Schrecker ST; Gostomski PA
    Biotechnol Lett; 2005 Oct; 27(19):1435-8. PubMed ID: 16231213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultradrawing novel ultra-high molecular weight polyethylene fibers filled with bacterial cellulose nanofibers.
    Yeh JT; Tsai CC; Wang CK; Shao JW; Xiao MZ; Chen SC
    Carbohydr Polym; 2014 Jan; 101():1-10. PubMed ID: 24299742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds.
    Innala M; Riebe I; Kuzmenko V; Sundberg J; Gatenholm P; Hanse E; Johannesson S
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):302-8. PubMed ID: 23895194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.