These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 21314160)
61. Computational investigations into the substituent effects of -N₃, -NF₂, -NO₂, and -NH₂ on the structure, sensitivity and detonation properties of N, N'-azobis(1,2,4-triazole). Yang J; Yan H; Wang G; Zhang X; Wang T; Gong X J Mol Model; 2014 Apr; 20(4):2148. PubMed ID: 24652501 [TBL] [Abstract][Full Text] [Related]
62. Molecular design and theoretical study of oxadiazole-bifurazan derivatives. Chen J; Xu J; Xiao T; Zhao M; Cao J; Ma P; Ma C J Mol Model; 2023 May; 29(6):175. PubMed ID: 37171592 [TBL] [Abstract][Full Text] [Related]
63. Computational study about the thermal stability and the detonation performance of nitro-substituted thymine. Li B; Li L; Peng J J Mol Model; 2020 Sep; 26(9):253. PubMed ID: 32870406 [TBL] [Abstract][Full Text] [Related]
64. Steric effects of polar substituents evaluated in terms of energy by means of isodesmic reactions. Böhm S; Exner O Org Biomol Chem; 2008 Mar; 6(6):1092-6. PubMed ID: 18327336 [TBL] [Abstract][Full Text] [Related]
65. Hydrogen-bonding interactions and properties of energetic nitroamino[1,3,5]triazine-based guanidinium salts: DFT-D and QTAIM studies. Wang F; Du H; Liu H; Gong X Chem Asian J; 2012 Nov; 7(11):2577-91. PubMed ID: 22945691 [TBL] [Abstract][Full Text] [Related]
66. Substituent effects on benzdiyne: a density functional theory study. Arulmozhiraja S; Sato T; Yabe A J Org Chem; 2003 Jun; 68(13):5084-90. PubMed ID: 12816461 [TBL] [Abstract][Full Text] [Related]
67. Theoretical study of the stabilities and detonation performance of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and its derivatives. Zhang X; Gong X J Mol Model; 2015 Feb; 21(2):26. PubMed ID: 25631920 [TBL] [Abstract][Full Text] [Related]
68. Theoretical exploration about nitro-substituted derivatives of pyrimidine as high-energy-density materials. Wang X; Zhang X; Song Y; Xu Z; Meng Y; Li B J Mol Model; 2019 Dec; 26(1):5. PubMed ID: 31834524 [TBL] [Abstract][Full Text] [Related]
69. Novel fluorine-containing energetic materials: how potential are they? A computational study of detonation performance. Yang J; Bai T; Guan J; Li M; Zhen Z; Dong X; Wang Y; Wang Y J Mol Model; 2023 Jul; 29(8):228. PubMed ID: 37405580 [TBL] [Abstract][Full Text] [Related]
70. Theoretical investigation on the structure and performance of N, N'-azobis-polynitrodiazoles. Jing M; Li H; Wang J; Shu Y; Zhang X; Ma Q; Huang Y J Mol Model; 2014 Apr; 20(4):2155. PubMed ID: 24633767 [TBL] [Abstract][Full Text] [Related]
71. Molecular design of energetic tetrazine-triazole derivatives. Li Y; Li Y; Jin S; Li S; Chen K; Bao F J Mol Model; 2021 Feb; 27(3):98. PubMed ID: 33641021 [TBL] [Abstract][Full Text] [Related]
72. Theoretical investigation of nitrogen-rich high-energy-density materials based on furazan substituted s-triazine. Huang Y; Zhang Q; Zhan LW; Hou J; Li BD J Mol Model; 2020 Jun; 26(7):175. PubMed ID: 32529276 [TBL] [Abstract][Full Text] [Related]
73. Theoretical studies of -NH₂ and -NO₂ substituted dipyridines. Liu H; Wang F; Wang GX; Gong XD J Mol Model; 2012 Oct; 18(10):4639-47. PubMed ID: 22648786 [TBL] [Abstract][Full Text] [Related]
74. Dinitroamino benzene derivatives: a class new potential high energy density compounds. Cao Q J Mol Model; 2013 Jun; 19(6):2205-10. PubMed ID: 23358742 [TBL] [Abstract][Full Text] [Related]
75. The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density. Varadwaj PR; Marques HM Phys Chem Chem Phys; 2010 Mar; 12(9):2126-38. PubMed ID: 20165761 [TBL] [Abstract][Full Text] [Related]
76. Sensitivity and performance of azole-based energetic materials. Yu Z; Bernstein ER J Phys Chem A; 2013 Oct; 117(42):10889-902. PubMed ID: 24059683 [TBL] [Abstract][Full Text] [Related]
77. Theoretical investigations of a high density cage compound 10-(1-nitro-1, 2, 3, 4-tetraazol-5-yl)) methyl-2, 4, 6, 8, 12-hexanitrohexaazaisowurtzitane. Zhang JY; Du HC; Wang F; Gong XD; Huang YS J Mol Model; 2012 Jan; 18(1):165-70. PubMed ID: 21523543 [TBL] [Abstract][Full Text] [Related]
78. Theoretical studies on the structure and detonation properties of amino-, methyl-, and nitro-substituted 3,4,5-trinitro-1H-pyrazoles. Ravi P; Gore GM; Venkatesan V; Tewari SP; Sikder AK J Hazard Mater; 2010 Nov; 183(1-3):859-65. PubMed ID: 20728272 [TBL] [Abstract][Full Text] [Related]
79. Reaction of phenols with the 2,2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism. Foti MC; Daquino C; Mackie ID; DiLabio GA; Ingold KU J Org Chem; 2008 Dec; 73(23):9270-82. PubMed ID: 18991378 [TBL] [Abstract][Full Text] [Related]
80. Effect of ring substitution on the S-H bond dissociation enthalpies of thiophenols. An experimental and computational study. Mulder P; Mozenson O; Lin S; Bernardes CE; Minas da Piedade ME; Santos AF; Ribeiro da Silva MA; Dilabio GA; Korth HG; Ingold KU J Phys Chem A; 2006 Aug; 110(32):9949-58. PubMed ID: 16898699 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]