These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 21314160)
81. Theoretical studies of novel high energy density materials based on oxadiazoles. Xia W; Zhang R; Xu X; Ma C; Ma P; Pan Y; Jiang J J Mol Model; 2021 Jun; 27(7):204. PubMed ID: 34143315 [TBL] [Abstract][Full Text] [Related]
82. Controlling the directionality of charge transfer in phthalocyaninato zinc sensitizer for a dye-sensitized solar cell: density functional theory studies. Wan L; Qi D; Zhang Y; Jiang J Phys Chem Chem Phys; 2011 Jan; 13(4):1639-48. PubMed ID: 21103486 [TBL] [Abstract][Full Text] [Related]
83. Density functional study on the derivatives of purine. Wei-Jie C; Lu-Lin L; Bu-Tong L; Hai-Shun W J Mol Model; 2012 Aug; 18(8):3501-6. PubMed ID: 22302506 [TBL] [Abstract][Full Text] [Related]
84. Theoretical design of energetic nitrogen-rich derivatives of 1,7-diamino-1,7-dinitrimino-2,4,6-trinitro-2,4,6-triazaheptane. Wu Q; Zhu W; Xiao H J Mol Model; 2013 Aug; 19(8):2945-54. PubMed ID: 23559097 [TBL] [Abstract][Full Text] [Related]
85. Effect of the substituent and hydrogen bond on the geometry and electronic properties of OH and O(-) groups in para-substituted phenol and phenolate derivatives. Szatylowicz H; Krygowski TM J Phys Chem A; 2010 Oct; 114(40):10885-90. PubMed ID: 20853885 [TBL] [Abstract][Full Text] [Related]
86. Theoretical investigation of an energetic fullerene derivative. Tan B; Peng R; Li H; Jin B; Chu S; Long X J Comput Chem; 2010 Sep; 31(12):2233-7. PubMed ID: 20575012 [TBL] [Abstract][Full Text] [Related]
87. Theoretical study on different substituent-modified derivatives of 6-dinitrophenyl-5,6,7,8-tetrahydro-4-imidazo [4,5-e]furazano[3,4-b] pyrazine. Gu Z; Bo M; Gao Z; Xu J; Chen J; Xiao T; Ma P J Mol Model; 2024 May; 30(6):192. PubMed ID: 38814476 [TBL] [Abstract][Full Text] [Related]
88. Theoretical studies on vicinal-tetrazine compounds: furoxano-1,2,3,4-tetrazine-1,3,5-trioxide (FTTO-α) and furoxano-1,2,3,4-tetrazine-1,3,7-trioxide (FTTO-β). Wang T; Zhang T; Xu L; Wu X; Gong X; Xia M J Mol Model; 2014 Dec; 20(12):2516. PubMed ID: 25413679 [TBL] [Abstract][Full Text] [Related]
89. Single-site mutation and secondary structure stability: an isodesmic reaction approach. The case of unnatural amino acid mutagenesis Ala-->Lac. Cieplak AS; Sürmeli NB J Org Chem; 2004 May; 69(10):3250-61. PubMed ID: 15132529 [TBL] [Abstract][Full Text] [Related]
90. Derivatives of 1,5-diamino-1H-tetrazole: a new family of energetic heterocyclic-based salts. Gálvez-Ruiz JC; Holl G; Karaghiosoff K; Klapötke TM; Löhnwitz K; Mayer P; Nöth H; Polborn K; Rohbogner CJ; Suter M; Weigand JJ Inorg Chem; 2005 Jun; 44(12):4237-53. PubMed ID: 15934752 [TBL] [Abstract][Full Text] [Related]
91. Quantum chemical, ballistic and explosivity calculations on 2,4,6,8-tetranitro-1,3,5,7-tetraaza cyclooctatetraene: a new high energy molecule. Gejji SP; Talawar MB; Mukundan T; Kurian EM J Hazard Mater; 2006 Jun; 134(1-3):36-40. PubMed ID: 16343767 [TBL] [Abstract][Full Text] [Related]
92. Quick estimation of heats of detonation of aromatic energetic compounds from structural parameters. Keshavarz MH J Hazard Mater; 2007 May; 143(1-2):549-54. PubMed ID: 17074439 [TBL] [Abstract][Full Text] [Related]
93. Substituent effects on O--H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants. Zhang HY; Sun YM; Wang XL Chemistry; 2003 Jan; 9(2):502-8. PubMed ID: 12532299 [TBL] [Abstract][Full Text] [Related]
94. Characterization of nitrogen-bridged 1,2,4,5-tetrazine-, furazan-, and 1H-tetrazole-based polyheterocyclic compounds: heats of formation, thermal stability, and detonation properties. Wei T; Wu J; Zhu W; Zhang C; Xiao H J Mol Model; 2012 Aug; 18(8):3467-79. PubMed ID: 22281812 [TBL] [Abstract][Full Text] [Related]
95. Theoretical investigation on detonation performances and thermodynamic stabilities of the prismane derivatives. Chi WJ; Li LL; Li BT; Wu HS J Mol Model; 2013 Mar; 19(3):1049-57. PubMed ID: 23114429 [TBL] [Abstract][Full Text] [Related]
96. Theoretical studies on a new furazan compound bis[4-nitramino-furazanyl-3-azoxy]azofurazan (ADNAAF). Zheng C; Chu Y; Xu L; Wang F; Lei W; Xia M; Gong X J Mol Model; 2016 Jun; 22(6):129. PubMed ID: 27179804 [TBL] [Abstract][Full Text] [Related]
97. Fascinating transformations of donor-acceptor complexes of group 13 metal (Al, Ga, In) derivatives with nitriles and isonitriles: from monomeric cyanides to rings and cages. Timoshkin AY; Schaefer HF J Am Chem Soc; 2003 Aug; 125(33):9998-10011. PubMed ID: 12914463 [TBL] [Abstract][Full Text] [Related]
98. The C-H and alpha(C-X) bond dissociation enthalpies of toluene, C6H5-CH2X (X = F, Cl), and their substituted derivatives: a DFT study. Nam PC; Nguyen MT; Chandra AK J Phys Chem A; 2005 Nov; 109(45):10342-7. PubMed ID: 16833329 [TBL] [Abstract][Full Text] [Related]
99. Combination multi-nitrogen with high heat of formation: theoretical studies on the performance of bridged 1,2,4,5-tetrazine derivatives. Zeng L; Li J; Qiao C; Jiang Y; Wu J; Li H; Zhang J J Mol Model; 2021 Dec; 28(1):3. PubMed ID: 34874491 [TBL] [Abstract][Full Text] [Related]
100. Ring conserved isodesmic reactions: A new method for estimating the heats of formation of aromatics and PAHs. Sivaramakrishnan R; Tranter RS; Brezinsky K J Phys Chem A; 2005 Mar; 109(8):1621-8. PubMed ID: 16833486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]