BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 21314273)

  • 1. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural decoding using gyral and intrasulcal electrocorticograms.
    Yanagisawa T; Hirata M; Saitoh Y; Kato A; Shibuya D; Kamitani Y; Yoshimine T
    Neuroimage; 2009 May; 45(4):1099-106. PubMed ID: 19349227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject.
    Hotson G; McMullen DP; Fifer MS; Johannes MS; Katyal KD; Para MP; Armiger R; Anderson WS; Thakor NV; Wester BA; Crone NE
    J Neural Eng; 2016 Apr; 13(2):026017-26017. PubMed ID: 26863276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding three-dimensional reaching movements using electrocorticographic signals in humans.
    Bundy DT; Pahwa M; Szrama N; Leuthardt EC
    J Neural Eng; 2016 Apr; 13(2):026021. PubMed ID: 26902372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of arm movement trajectories from ECoG-recordings in humans.
    Pistohl T; Ball T; Schulze-Bonhage A; Aertsen A; Mehring C
    J Neurosci Methods; 2008 Jan; 167(1):105-14. PubMed ID: 18022247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocorticographic control of a prosthetic arm in paralyzed patients.
    Yanagisawa T; Hirata M; Saitoh Y; Kishima H; Matsushita K; Goto T; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    Ann Neurol; 2012 Mar; 71(3):353-61. PubMed ID: 22052728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding natural grasp types from human ECoG.
    Pistohl T; Schulze-Bonhage A; Aertsen A; Mehring C; Ball T
    Neuroimage; 2012 Jan; 59(1):248-60. PubMed ID: 21763434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of reaching movement trajectories using electrocorticographic signals in humans.
    Talakoub O; Marquez-Chin C; Popovic MR; Navarro J; Fonoff ET; Hamani C; Wong W
    PLoS One; 2017; 12(9):e0182542. PubMed ID: 28931054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients.
    SpĆ¼ler M; Walter A; Ramos-Murguialday A; Naros G; Birbaumer N; Gharabaghi A; Rosenstiel W; Bogdan M
    J Neural Eng; 2014 Dec; 11(6):066008. PubMed ID: 25358531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas.
    Chestek CA; Gilja V; Blabe CH; Foster BL; Shenoy KV; Parvizi J; Henderson JM
    J Neural Eng; 2013 Apr; 10(2):026002. PubMed ID: 23369953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.
    Farrokhi B; Erfanian A
    J Neural Eng; 2018 Jun; 15(3):036020. PubMed ID: 29485407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding individual finger movements from one hand using human EEG signals.
    Liao K; Xiao R; Gonzalez J; Ding L
    PLoS One; 2014; 9(1):e85192. PubMed ID: 24416360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in Japanese macaques.
    Shimoda K; Nagasaka Y; Chao ZC; Fujii N
    J Neural Eng; 2012 Jun; 9(3):036015. PubMed ID: 22627008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals.
    Fukuma R; Yanagisawa T; Yorifuji S; Kato R; Yokoi H; Hirata M; Saitoh Y; Kishima H; Kamitani Y; Yoshimine T
    PLoS One; 2015; 10(7):e0131547. PubMed ID: 26134845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An online brain-machine interface using decoding of movement direction from the human electrocorticogram.
    Milekovic T; Fischer J; Pistohl T; Ruescher J; Schulze-Bonhage A; Aertsen A; Rickert J; Ball T; Mehring C
    J Neural Eng; 2012 Aug; 9(4):046003. PubMed ID: 22713666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-free electrocorticography frequency mapping of the motor cortex.
    Vansteensel MJ; Bleichner MG; Dintzner LT; Aarnoutse EJ; Leijten FS; Hermes D; Ramsey NF
    Clin Neurophysiol; 2013 Jun; 124(6):1169-74. PubMed ID: 23340046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of contralateral and ipsilateral finger movements for electrocorticographic brain-computer interfaces.
    Scherer R; Zanos SP; Miller KJ; Rao RP; Ojemann JG
    Neurosurg Focus; 2009 Jul; 27(1):E12. PubMed ID: 19569887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gesture Decoding Using ECoG Signals from Human Sensorimotor Cortex: A Pilot Study.
    Li Y; Zhang S; Jin Y; Cai B; Controzzi M; Zhu J; Zhang J; Zheng X
    Behav Neurol; 2017; 2017():3435686. PubMed ID: 29104374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Typical somatomotor physiology of the hand is preserved in a patient with an amputated arm: An ECoG case study.
    van den Boom M; Miller KJ; Gregg NM; Ojeda Valencia G; Lee KH; Richner TJ; Ramsey NF; Worrell GA; Hermes D
    Neuroimage Clin; 2021; 31():102728. PubMed ID: 34182408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.