These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 21315072)
21. EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. Srikantha T; Tsai LK; Daniels K; Soll DR J Bacteriol; 2000 Mar; 182(6):1580-91. PubMed ID: 10692363 [TBL] [Abstract][Full Text] [Related]
22. Target specificity of the Candida albicans Efg1 regulator. Lassak T; Schneider E; Bussmann M; Kurtz D; Manak JR; Srikantha T; Soll DR; Ernst JF Mol Microbiol; 2011 Nov; 82(3):602-18. PubMed ID: 21923768 [TBL] [Abstract][Full Text] [Related]
23. Park YN; Conway K; Pujol C; Daniels KJ; Soll DR mSphere; 2020 Feb; 5(1):. PubMed ID: 32024711 [TBL] [Abstract][Full Text] [Related]
24. Roles of the Transcription Factors Sfl2 and Efg1 in White-Opaque Switching in a/α Strains of Candida albicans. Park YN; Conway K; Conway TP; Daniels KJ; Soll DR mSphere; 2019 Apr; 4(2):. PubMed ID: 30996111 [No Abstract] [Full Text] [Related]
25. The WOR1 5' untranslated region regulates white-opaque switching in Candida albicans by reducing translational efficiency. Guan Z; Liu H Mol Microbiol; 2015 Jul; 97(1):125-38. PubMed ID: 25831958 [TBL] [Abstract][Full Text] [Related]
26. The regulation of EFG1 in white-opaque switching in Candida albicans involves overlapping promoters. Lachke SA; Srikantha T; Soll DR Mol Microbiol; 2003 Apr; 48(2):523-36. PubMed ID: 12675809 [TBL] [Abstract][Full Text] [Related]
27. CRZ1, a target of the calcineurin pathway in Candida albicans. Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987 [TBL] [Abstract][Full Text] [Related]
28. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. Srikantha T; Tsai L; Daniels K; Klar AJ; Soll DR J Bacteriol; 2001 Aug; 183(15):4614-25. PubMed ID: 11443097 [TBL] [Abstract][Full Text] [Related]
29. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Miller MG; Johnson AD Cell; 2002 Aug; 110(3):293-302. PubMed ID: 12176317 [TBL] [Abstract][Full Text] [Related]
30. A positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae. Shenhar G; Kassir Y Mol Cell Biol; 2001 Mar; 21(5):1603-12. PubMed ID: 11238897 [TBL] [Abstract][Full Text] [Related]
31. Discovery of a "white-gray-opaque" tristable phenotypic switching system in candida albicans: roles of non-genetic diversity in host adaptation. Tao L; Du H; Guan G; Dai Y; Nobile CJ; Liang W; Cao C; Zhang Q; Zhong J; Huang G PLoS Biol; 2014 Apr; 12(4):e1001830. PubMed ID: 24691005 [TBL] [Abstract][Full Text] [Related]
32. Identification of a putative DEAD-box RNA helicase and a zinc-finger protein in Candida albicans by functional complementation of the S. cerevisiae rok1 mutation. Kim WI; Lee WB; Song K; Kim J Yeast; 2000 Mar; 16(5):401-9. PubMed ID: 10705369 [TBL] [Abstract][Full Text] [Related]
33. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431 [TBL] [Abstract][Full Text] [Related]
34. Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Sonneborn A; Tebarth B; Ernst JF Infect Immun; 1999 Sep; 67(9):4655-60. PubMed ID: 10456912 [TBL] [Abstract][Full Text] [Related]
35. Activation of the Cph1-dependent MAP kinase signaling pathway induces white-opaque switching in Candida albicans. Ramírez-Zavala B; Weyler M; Gildor T; Schmauch C; Kornitzer D; Arkowitz R; Morschhäuser J PLoS Pathog; 2013; 9(10):e1003696. PubMed ID: 24130492 [TBL] [Abstract][Full Text] [Related]
36. Role of the N-acetylglucosamine kinase (Hxk1) in the regulation of white-gray-opaque tristable phenotypic transitions in C. albicans. Cao C; Guan G; Du H; Tao L; Huang G Fungal Genet Biol; 2016 Jul; 92():26-32. PubMed ID: 27153757 [TBL] [Abstract][Full Text] [Related]
38. Identification and Characterization of Wor4, a New Transcriptional Regulator of White-Opaque Switching. Lohse MB; Johnson AD G3 (Bethesda); 2016 Jan; 6(3):721-9. PubMed ID: 26772749 [TBL] [Abstract][Full Text] [Related]
39. The white-phase-specific gene WH11 is not required for white-opaque switching in Candida albicans. Park YN; Strauss A; Morschhäuser J Mol Genet Genomics; 2004 Aug; 272(1):88-97. PubMed ID: 15249973 [TBL] [Abstract][Full Text] [Related]
40. Rim101-upregulated Fets contribute to dark pigment formation in gray cells of Candida albicans. Dai B; Xu Y; Wu H; Chen J Acta Biochim Biophys Sin (Shanghai); 2021 Dec; 53(12):1723-1730. PubMed ID: 34599586 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]