These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 21315097)
1. Circadian rhythms in metabolic variables in Caenorhabditis elegans. Migliori ML; Simonetta SH; Romanowski A; Golombek DA Physiol Behav; 2011 Jun; 103(3-4):315-20. PubMed ID: 21315097 [TBL] [Abstract][Full Text] [Related]
2. Daily variation in melatonin synthesis and arylalkylamine N-acetyltransferase activity in the nematode Caenorhabditis elegans. Migliori ML; Romanowski A; Simonetta SH; Valdez D; Guido M; Golombek DA J Pineal Res; 2012 Aug; 53(1):38-46. PubMed ID: 21995323 [TBL] [Abstract][Full Text] [Related]
3. An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application. Simonetta SH; Golombek DA J Neurosci Methods; 2007 Apr; 161(2):273-80. PubMed ID: 17207862 [TBL] [Abstract][Full Text] [Related]
4. Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata). López-Olmeda JF; Montoya A; Oliveira C; Sánchez-Vázquez FJ Chronobiol Int; 2009 Oct; 26(7):1389-408. PubMed ID: 19916838 [TBL] [Abstract][Full Text] [Related]
5. Synchronization of daily rhythms of locomotor activity and plasma glucose, cortisol and thyroid hormones to feeding in Gilthead seabream (Sparus aurata) under a light-dark cycle. Montoya A; López-Olmeda JF; Garayzar AB; Sánchez-Vázquez FJ Physiol Behav; 2010 Aug; 101(1):101-7. PubMed ID: 20434474 [TBL] [Abstract][Full Text] [Related]
6. Intestinal calcium waves coordinate a behavioral motor program in C. elegans. Teramoto T; Iwasaki K Cell Calcium; 2006 Sep; 40(3):319-27. PubMed ID: 16780946 [TBL] [Abstract][Full Text] [Related]
7. The pars intercerebralis as a modulator of locomotor rhythms and feeding in the American cockroach, Periplaneta americana. Matsui T; Matsumoto T; Ichihara N; Sakai T; Satake H; Watari Y; Takeda M Physiol Behav; 2009 Mar; 96(4-5):548-56. PubMed ID: 19146864 [TBL] [Abstract][Full Text] [Related]
8. What keeps C. elegans regular: the genetics of defecation. Branicky R; Hekimi S Trends Genet; 2006 Oct; 22(10):571-9. PubMed ID: 16911844 [TBL] [Abstract][Full Text] [Related]
9. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions. López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882 [TBL] [Abstract][Full Text] [Related]
10. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629 [TBL] [Abstract][Full Text] [Related]
11. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats. Verwey M; Lam GY; Amir S Eur J Neurosci; 2009 Jun; 29(11):2217-22. PubMed ID: 19490091 [TBL] [Abstract][Full Text] [Related]
12. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Trojanowski NF; Raizen DM; Fang-Yen C Sci Rep; 2016 Mar; 6():22940. PubMed ID: 26976078 [TBL] [Abstract][Full Text] [Related]
13. Non-dauer larval dispersal in Caenorhabditis elegans. Harvey SC J Exp Zool B Mol Dev Evol; 2009 May; 312B(3):224-30. PubMed ID: 19288538 [TBL] [Abstract][Full Text] [Related]
14. Robust food anticipatory circadian rhythms in rats with complete ablation of the thalamic paraventricular nucleus. Landry GJ; Yamakawa GR; Mistlberger RE Brain Res; 2007 Apr; 1141():108-18. PubMed ID: 17296167 [TBL] [Abstract][Full Text] [Related]
15. Locomotor, feeding and melatonin daily rhythms in sharpsnout seabream (Diplodus puntazzo). Vera LM; Madrid JA; Sánchez-Vázquez FJ Physiol Behav; 2006 Jun; 88(1-2):167-72. PubMed ID: 16682061 [TBL] [Abstract][Full Text] [Related]
16. Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii). Valentinuzzi VS; Oda GA; Araujo JF; Ralph MR Chronobiol Int; 2009 Jan; 26(1):14-27. PubMed ID: 19142755 [TBL] [Abstract][Full Text] [Related]
17. Diurnal rhythm and effect of temperature on oxygen consumption in earthworms, Amynthas gracilis and Pontoscolex corethrurus. Chuang SC; Lee H; Chen JH J Exp Zool A Comp Exp Biol; 2004 Sep; 301(9):737-44. PubMed ID: 15559935 [TBL] [Abstract][Full Text] [Related]
18. Demand-feeding rhythms and feeding-entrainment of locomotor activity rhythms in tench (Tinca tinca). Herrero MJ; Pascual M; Madrid JA; Sánchez-Vázquez FJ Physiol Behav; 2005 Mar; 84(4):595-605. PubMed ID: 15811395 [TBL] [Abstract][Full Text] [Related]
19. Feeding entrainment of daily rhythms of locomotor activity and clock gene expression in zebrafish brain. Sanchez JA; Sanchez-Vazquez FJ Chronobiol Int; 2009 Aug; 26(6):1120-35. PubMed ID: 19731109 [TBL] [Abstract][Full Text] [Related]
20. Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus. Lamont EW; Diaz LR; Barry-Shaw J; Stewart J; Amir S Neuroscience; 2005; 132(2):245-8. PubMed ID: 15802179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]