BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21315107)

  • 1. Probing dimer interface stabilization within a four-helix bundle of the GrpE protein from Escherichia coli via internal deletion mutants: conversion of a dimer to monomer.
    Mehl AF; U G N; Ahmed Z; Wells A; Spyratos TD
    Int J Biol Macromol; 2011 May; 48(4):627-33. PubMed ID: 21315107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into dimerization and four-helix bundle formation found by dissection of the dimer interface of the GrpE protein from Escherichia coli.
    Mehl AF; Heskett LD; Jain SS; Demeler B
    Protein Sci; 2003 Jun; 12(6):1205-15. PubMed ID: 12761391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the stability and mechanism for folding of the GrpE1-112 tetrameric deletion mutant of the GrpE protein from E. coli.
    Mehl AF; Okada K; Dehn SM; Kurian S
    Biochem Biophys Res Commun; 2012 Apr; 420(3):635-8. PubMed ID: 22450325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic linkage in the GrpE nucleotide exchange factor, a molecular thermosensor.
    Gelinas AD; Toth J; Bethoney KA; Langsetmo K; Stafford WF; Harrison CJ
    Biochemistry; 2003 Aug; 42(30):9050-9. PubMed ID: 12885238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GrpE mutant containing the NH(2)-terminal "tail" region is able to displace bound polypeptide substrate from DnaK.
    Mehl AF; Heskett LD; Neal KM
    Biochem Biophys Res Commun; 2001 Mar; 282(2):562-9. PubMed ID: 11401497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of the middle domain of ClpB from Escherichia coli.
    Kedzierska S; Akoev V; Barnett ME; Zolkiewski M
    Biochemistry; 2003 Dec; 42(48):14242-8. PubMed ID: 14640692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostability of two cyanobacterial GrpE thermosensors.
    Barthel S; Rupprecht E; Schneider D
    Plant Cell Physiol; 2011 Oct; 52(10):1776-85. PubMed ID: 21865302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermosensor action of GrpE. The DnaK chaperone system at heat shock temperatures.
    Grimshaw JP; Jelesarov I; Siegenthaler RK; Christen P
    J Biol Chem; 2003 May; 278(21):19048-53. PubMed ID: 12639955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Stutter in the Coiled-Coil Domain of
    Upadhyay T; Potteth US; Karekar VV; Saraogi I
    Biochemistry; 2021 May; 60(17):1356-1367. PubMed ID: 33881310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y; Reinstein J
    J Mol Biol; 2001 Nov; 314(1):167-78. PubMed ID: 11724541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structure-based interpretation of E.coli GrpE thermodynamic properties.
    Gelinas AD; Langsetmo K; Toth J; Bethoney KA; Stafford WF; Harrison CJ
    J Mol Biol; 2002 Oct; 323(1):131-42. PubMed ID: 12368105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of the E. coli stress protein YciF.
    Hindupur A; Liu D; Zhao Y; Bellamy HD; White MA; Fox RO
    Protein Sci; 2006 Nov; 15(11):2605-11. PubMed ID: 17001035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the functional role of a buried interchain aromatic cluster in Escherichia coli GrpE dimer.
    Upadhyay T; Karekar VV; Potteth US; Saraogi I
    Proteins; 2023 Jan; 91(1):108-120. PubMed ID: 35988048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A water mediated electrostatic interaction gives thermal stability to the "tail" region of the GrpE protein from E. coli.
    Mehl AF; Demeler B; Zraikat A
    Protein J; 2007 Jun; 26(4):239-45. PubMed ID: 17203387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new native EcHsp31 structure suggests a key role of structural flexibility for chaperone function.
    Quigley PM; Korotkov K; Baneyx F; Hol WG
    Protein Sci; 2004 Jan; 13(1):269-77. PubMed ID: 14691241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the L2 loop in the regulation and maintaining the proteolytic activity of HtrA (DegP) protein from Escherichia coli.
    Sobiecka-Szkatula A; Gieldon A; Scire A; Tanfani F; Figaj D; Koper T; Ciarkowski J; Lipinska B; Skorko-Glonek J
    Arch Biochem Biophys; 2010 Aug; 500(2):123-30. PubMed ID: 20515644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the chaperone DnaK allosterism by the nucleotide exchange factor GrpE.
    Melero R; Moro F; Pérez-Calvo MÁ; Perales-Calvo J; Quintana-Gallardo L; Llorca O; Muga A; Valpuesta JM
    J Biol Chem; 2015 Apr; 290(16):10083-92. PubMed ID: 25739641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone.
    Pellecchia M; Szyperski T; Wall D; Georgopoulos C; Wüthrich K
    J Mol Biol; 1996 Jul; 260(2):236-50. PubMed ID: 8764403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.