These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21315107)

  • 21. NMR analysis of the conformational properties of the trapped on-pathway folding intermediate of the bacterial immunity protein Im7.
    Whittaker SB; Spence GR; Günter Grossmann J; Radford SE; Moore GR
    J Mol Biol; 2007 Feb; 366(3):1001-15. PubMed ID: 17188712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free human mitochondrial GrpE is a symmetric dimer in solution.
    Borges JC; Fischer H; Craievich AF; Hansen LD; Ramos CH
    J Biol Chem; 2003 Sep; 278(37):35337-44. PubMed ID: 12840016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Folding topology of the disulfide-bonded dimeric DNA-binding domain of the myogenic determination factor MyoD.
    Starovasnik MA; Blackwell TK; Laue TM; Weintraub H; Klevit RE
    Biochemistry; 1992 Oct; 31(41):9891-903. PubMed ID: 1327135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Desolvation and development of specific hydrophobic core packing during Im7 folding.
    Bartlett AI; Radford SE
    J Mol Biol; 2010 Mar; 396(5):1329-45. PubMed ID: 20053361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvent-exposed residues in the Tet repressor (TetR) four-helix bundle contribute to subunit recognition and dimer stability.
    Schnappinger D; Schubert P; Berens C; Pfleiderer K; Hillen W
    J Biol Chem; 1999 Mar; 274(10):6405-10. PubMed ID: 10037732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a stability determinant on the edge of the Tet repressor four-helix bundle dimerization motif.
    Schubert P; Schnappinger D; Pfleiderer K; Hillen W
    Biochemistry; 2001 Mar; 40(11):3257-63. PubMed ID: 11258944
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Physicochemical and Mutational Analysis of Intersubunit Interactions of Escherichia coli Ferritin A.
    Ohtomo H; Ohtomo M; Sato D; Kurobe A; Sunato A; Matsumura Y; Kihara H; Fujiwara K; Ikeguchi M
    Biochemistry; 2015 Oct; 54(40):6243-51. PubMed ID: 26399896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conserved amino acid residues within the amino-terminal domain of ClpB are essential for the chaperone activity.
    Liu Z; Tek V; Akoev V; Zolkiewski M
    J Mol Biol; 2002 Aug; 321(1):111-20. PubMed ID: 12139937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid insertion reveals a necessary three-helical intermediate in the folding pathway of the colicin E7 immunity protein Im7.
    Knowling SE; Figueiredo AM; Whittaker SB; Moore GR; Radford SE
    J Mol Biol; 2009 Oct; 392(4):1074-86. PubMed ID: 19651139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Domain-swapped dimeric structure of a stable and functional de novo four-helix bundle protein, WA20.
    Arai R; Kobayashi N; Kimura A; Sato T; Matsuo K; Wang AF; Platt JM; Bradley LH; Hecht MH
    J Phys Chem B; 2012 Jun; 116(23):6789-97. PubMed ID: 22397676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
    Chi SW; Jeong DG; Woo JR; Lee HS; Park BC; Kim BY; Erikson RL; Ryu SE; Kim SJ
    FEBS Lett; 2011 Feb; 585(4):664-70. PubMed ID: 21266175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GrpE N-terminal domain contributes to the interaction with Dnak and modulates the dynamics of the chaperone substrate binding domain.
    Moro F; Taneva SG; Velázquez-Campoy A; Muga A
    J Mol Biol; 2007 Dec; 374(4):1054-64. PubMed ID: 17976642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and Mutational Analyses of Escherichia coli ZapD Reveal Charged Residues Involved in FtsZ Filament Bundling.
    Roach EJ; Wroblewski C; Seidel L; Berezuk AM; Brewer D; Kimber MS; Khursigara CM
    J Bacteriol; 2016 Jun; 198(11):1683-1693. PubMed ID: 27021560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.
    Gloss LM; Simler BR; Matthews CR
    J Mol Biol; 2001 Oct; 312(5):1121-34. PubMed ID: 11580254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli.
    Cupp-Vickery JR; Vickery LE
    J Mol Biol; 2000 Dec; 304(5):835-45. PubMed ID: 11124030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational disruption of the oligomerization of the mini-ferritin E. coli DPS through protein-protein interface mutation.
    Zhang Y; Fu J; Chee SY; Ang EX; Orner BP
    Protein Sci; 2011 Nov; 20(11):1907-17. PubMed ID: 21898653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity.
    Vijayalakshmi J; Mukhergee MK; Graumann J; Jakob U; Saper MA
    Structure; 2001 May; 9(5):367-75. PubMed ID: 11377197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of GrpE on DnaK-substrate interactions.
    Brehmer D; Gässler C; Rist W; Mayer MP; Bukau B
    J Biol Chem; 2004 Jul; 279(27):27957-64. PubMed ID: 15102842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutational analysis of the energetics of the GrpE.DnaK binding interface: equilibrium association constants by sedimentation velocity analytical ultracentrifugation.
    Gelinas AD; Toth J; Bethoney KA; Stafford WF; Harrison CJ
    J Mol Biol; 2004 May; 339(2):447-58. PubMed ID: 15136046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.