BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21315195)

  • 21. Characterization of beta-ketoadipate pathway from multi-drug resistance bacterium, Acinetobacter baumannii DU202 by proteomic approach.
    Park SH; Kim JW; Yun SH; Leem SH; Kahng HY; Kim SI
    J Microbiol; 2006 Dec; 44(6):632-40. PubMed ID: 17205041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost.
    Ravi K; García-Hidalgo J; Gorwa-Grauslund MF; Lidén G
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5059-5070. PubMed ID: 28299400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes.
    Kim J; Oliveros JC; Nikel PI; de Lorenzo V; Silva-Rocha R
    Environ Microbiol Rep; 2013 Dec; 5(6):883-91. PubMed ID: 24249296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86.
    Basu A; Shrivastava R; Basu B; Apte SK; Phale PS
    J Bacteriol; 2007 Nov; 189(21):7556-62. PubMed ID: 17827293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iTRAQ-based proteomic analysis of LI-F type peptides produced by Paenibacillus polymyxa JSa-9 mode of action against Bacillus cereus.
    Han J; Gao P; Zhao S; Bie X; Lu Z; Zhang C; Lv F
    J Proteomics; 2017 Jan; 150():130-140. PubMed ID: 27609309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human plasma proteome analysis by reversed sequence database search and molecular weight correlation based on a bacterial proteome analysis.
    Park GW; Kwon KH; Kim JY; Lee JH; Yun SH; Kim SI; Park YM; Cho SY; Paik YK; Yoo JS
    Proteomics; 2006 Feb; 6(4):1121-32. PubMed ID: 16429460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the proteome response to toluene exposure in the solvent tolerant Pseudomonas putida S12.
    Wijte D; van Baar BL; Heck AJ; Altelaar AF
    J Proteome Res; 2011 Feb; 10(2):394-403. PubMed ID: 20979388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic Characterization of the Pseudomonas sp. Strain phDV1 Response to Monocyclic Aromatic Compounds.
    Lyratzakis A; Valsamidis G; Kanavaki I; Nikolaki A; Rupprecht F; Langer JD; Tsiotis G
    Proteomics; 2021 Jan; 21(2):e2000003. PubMed ID: 33108051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield.
    van Duuren JB; Wijte D; Leprince A; Karge B; Puchałka J; Wery J; Dos Santos VA; Eggink G; Mars AE
    J Biotechnol; 2011 Dec; 156(3):163-72. PubMed ID: 21906639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper and cadmium: responses in Pseudomonas putida KT2440.
    Miller CD; Pettee B; Zhang C; Pabst M; McLean JE; Anderson AJ
    Lett Appl Microbiol; 2009 Dec; 49(6):775-83. PubMed ID: 19843215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free quantification reveals major proteomic changes in Pseudomonas putida F1 during the exponential growth phase.
    Herbst FA; Danielsen HN; Wimmer R; Nielsen PH; Dueholm MS
    Proteomics; 2015 Sep; 15(18):3244-52. PubMed ID: 26122999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative analysis of cellular proteome alterations of Pseudomonas putida to naphthalene-induced stress.
    Li SS; Hu X; Zhao H; Li YX; Zhang L; Gong LJ; Guo J; Zhao HB
    Biotechnol Lett; 2015 Aug; 37(8):1645-54. PubMed ID: 25868532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome.
    Roma-Rodrigues C; Santos PM; Benndorf D; Rapp E; Sá-Correia I
    J Proteomics; 2010 Jun; 73(8):1461-78. PubMed ID: 20153847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Construction of a versatile degrading bacteria Pseudomonas putida KT2440-DOP and its degrading characteristics].
    Gu LF; He J; Huang X; Jia KZ; Li SP
    Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):763-6. PubMed ID: 17172025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteome reference map for the plant growth-promoting bacterium Pseudomonas putida UW4.
    Cheng Z; Woody OZ; Song J; Glick BR; McConkey BJ
    Proteomics; 2009 Sep; 9(17):4271-4. PubMed ID: 19688754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics.
    Reddy PJ; Ray S; Sathe GJ; Gajbhiye A; Prasad TS; Rapole S; Panda D; Srivastava S
    J Proteomics; 2015 Jan; 114():247-62. PubMed ID: 25464363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes.
    Meng Q; Hou L; Zhao Y; Huang X; Huang Y; Xia S; Gu W; Wang W
    Fish Shellfish Immunol; 2014 Sep; 40(1):182-9. PubMed ID: 25017370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional genomics of the initial phase of cold adaptation of Pseudomonas putida KT2440.
    Frank S; Schmidt F; Klockgether J; Davenport CF; Gesell Salazar M; Völker U; Tümmler B
    FEMS Microbiol Lett; 2011 May; 318(1):47-54. PubMed ID: 21306427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential proteomic analysis of renal tissue in mesangial proliferative glomerulonephritis using iTRAQ technology.
    Sui W; Tang D; Zou T; Zou G; Chen J; Li H; Li L; Hou Y; Li H; Dai Y
    J Nephrol; 2013; 26(1):191-8. PubMed ID: 22641580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos.
    Li Z; Adams RM; Chourey K; Hurst GB; Hettich RL; Pan C
    J Proteome Res; 2012 Mar; 11(3):1582-90. PubMed ID: 22188275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.