These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 21315311)
1. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize. Wicklow DT; Rogers KD; Dowd PF; Gloer JB Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311 [TBL] [Abstract][Full Text] [Related]
2. Diplodiatoxin, chaetoglobosins, and diplonine associated with a field outbreak of Stenocarpella ear rot in Illinois. Rogers KD; Cannistra JC; Gloer JB; Wicklow DT Mycotoxin Res; 2014 May; 30(2):61-70. PubMed ID: 24504633 [TBL] [Abstract][Full Text] [Related]
3. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. Wicklow DT; Jordan AM; Gloer JB Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415 [TBL] [Abstract][Full Text] [Related]
4. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia. Mukanga M; Derera J; Tongoona P; Laing MD Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099 [TBL] [Abstract][Full Text] [Related]
5. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Zaccaron AZ; Woloshuk CP; Bluhm BH Fungal Biol; 2017 Nov; 121(11):966-983. PubMed ID: 29029703 [TBL] [Abstract][Full Text] [Related]
6. Allozyme-specific modification of a maize seed chitinase by a protein secreted by the fungal pathogen Stenocarpella maydis. Naumann TA; Wicklow DT Phytopathology; 2010 Jul; 100(7):645-54. PubMed ID: 20528182 [TBL] [Abstract][Full Text] [Related]
7. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Wicklow DT; Roth S; Deyrup ST; Gloer JB Mycol Res; 2005 May; 109(Pt 5):610-8. PubMed ID: 16018316 [TBL] [Abstract][Full Text] [Related]
8. In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling. Rodriguez Estrada AE; Hegeman A; Kistler HC; May G Fungal Genet Biol; 2011 Sep; 48(9):874-85. PubMed ID: 21703356 [TBL] [Abstract][Full Text] [Related]
9. Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis. Masango MG; Ellis CE; Botha CJ Toxicon; 2015 Aug; 102():14-24. PubMed ID: 26004494 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Wicklow DT; Poling SM Phytopathology; 2009 Jan; 99(1):109-15. PubMed ID: 19055442 [TBL] [Abstract][Full Text] [Related]
11. Infection and ultrastructure of conidia and pycnidia of Stenocarpella maydis in maize. Xia Z; Wu H; Achar PN J Food Prot; 2011 Apr; 74(4):676-80. PubMed ID: 21477487 [TBL] [Abstract][Full Text] [Related]
12. Failure of diplodiatoxin to induce diplodiosis in juvenile goats. Botha CJ; Ackerman LGJ; Masango MG; Arnot LF Onderstepoort J Vet Res; 2020 Mar; 87(1):e1-e4. PubMed ID: 32242425 [TBL] [Abstract][Full Text] [Related]
13. Diplonine, a neurotoxin isolated from cultures of the fungus Stenocarpella maydis (Berk.) Sacc. that induces diplodiosis. Snyman LD; Kellerman TS; Vleggaar R; Flett BC; Basson KM; Schultz RA J Agric Food Chem; 2011 Aug; 59(16):9039-44. PubMed ID: 21780820 [TBL] [Abstract][Full Text] [Related]
14. Screening and in vitro production of diplodiatoxin from the isolates of Stenocarpella maydis and its toxigenic effect on bacterial strains. Rao SK; Achar PN Indian J Exp Biol; 2001 Dec; 39(12):1243-8. PubMed ID: 12018518 [TBL] [Abstract][Full Text] [Related]
15. Cytotoxicity of diplodiatoxin, dipmatol and diplonine, metabolites synthesized by Stenocarpella maydis. Masango MG; Ferreira GC; Ellis CE; Elgorashi EE; Botha CJ Toxicon; 2014 May; 82():26-9. PubMed ID: 24530231 [TBL] [Abstract][Full Text] [Related]
16. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. Lee K; Pan JJ; May G FEMS Microbiol Lett; 2009 Oct; 299(1):31-7. PubMed ID: 19694816 [TBL] [Abstract][Full Text] [Related]
17. Equisetum arvense hydro-alcoholic extract: phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize. Garcia D; Ramos AJ; Sanchis V; MarĂn S J Sci Food Agric; 2013 Jul; 93(9):2248-53. PubMed ID: 23355286 [TBL] [Abstract][Full Text] [Related]
18. Genetic Diversity of Stenocarpella maydis in the Major Corn Production Areas of the United States. Romero Luna MP; Aime MC; Chilvers MI; Wise KA Plant Dis; 2017 Dec; 101(12):2020-2026. PubMed ID: 30677369 [TBL] [Abstract][Full Text] [Related]
19. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens. Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968 [TBL] [Abstract][Full Text] [Related]
20. Indirect selection for resistance to ear rot and leaf diseases in maize lines using biplots. Pereira GS; Camargos RB; Balestre M; Von Pinho RG; C Melo WM Genet Mol Res; 2015 Sep; 14(3):11052-62. PubMed ID: 26400335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]