These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 21315311)
21. Biodiversity of complexes of mycotoxigenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape. Logrieco A; Moretti A; Perrone G; Mulè G Int J Food Microbiol; 2007 Oct; 119(1-2):11-6. PubMed ID: 17765992 [TBL] [Abstract][Full Text] [Related]
22. Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain. García-Carneros AB; Girón I; Molinero-Ruiz L Commun Agric Appl Biol Sci; 2012; 77(3):173-9. PubMed ID: 23878971 [TBL] [Abstract][Full Text] [Related]
23. Effect of Equisetum arvense and Stevia rebaudiana extracts on growth and mycotoxin production by Aspergillus flavus and Fusarium verticillioides in maize seeds as affected by water activity. Garcia D; Ramos AJ; Sanchis V; Marín S Int J Food Microbiol; 2012 Feb; 153(1-2):21-7. PubMed ID: 22104120 [TBL] [Abstract][Full Text] [Related]
24. The influence of fusarium ear infection on the maize yield and quality (Transylvania-Romania). Nagy E; Voichiţa H; Kadar R Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1147-50. PubMed ID: 17390871 [TBL] [Abstract][Full Text] [Related]
25. Maize ear rot and moniliformin contamination by cryptic species of Fusarium subglutinans. Desjardins AE; Maragos CM; Proctor RH J Agric Food Chem; 2006 Sep; 54(19):7383-90. PubMed ID: 16968109 [TBL] [Abstract][Full Text] [Related]
26. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host. Rodriguez Estrada AE; Jonkers W; Kistler HC; May G Fungal Genet Biol; 2012 Jul; 49(7):578-87. PubMed ID: 22587948 [TBL] [Abstract][Full Text] [Related]
27. Development of Molecular Assays for Detection of Stenocarpella maydis and Stenocarpella macrospora in Corn. Romero MP; Wise KA Plant Dis; 2015 Jun; 99(6):761-769. PubMed ID: 30699541 [TBL] [Abstract][Full Text] [Related]
28. Diplodia maydis: a cause of death of cattle in Argentina. Odriozola E; Odeón A; Canton G; Clemente G; Escande A N Z Vet J; 2005 Apr; 53(2):160-1. PubMed ID: 15846403 [TBL] [Abstract][Full Text] [Related]
29. Six new genes required for production of T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize. Inderbitzin P; Asvarak T; Turgeon BG Mol Plant Microbe Interact; 2010 Apr; 23(4):458-72. PubMed ID: 20192833 [TBL] [Abstract][Full Text] [Related]
30. Effect of Selected Volatiles on Two Stored Pests: The Fungus Fusarium verticillioides and the Maize Weevil Sithophilus zeamais. Zunino MP; Herrera JM; Pizzolitto RP; Rubinstein HR; Zygadlo JA; Dambolena JS J Agric Food Chem; 2015 Sep; 63(35):7743-9. PubMed ID: 26257042 [TBL] [Abstract][Full Text] [Related]
32. In Vitro and in Field Response of Different Fungicides against Masiello M; Somma S; Ghionna V; Logrieco AF; Moretti A Toxins (Basel); 2019 Jan; 11(1):. PubMed ID: 30609646 [No Abstract] [Full Text] [Related]
33. Reprogrammed endophytic microbial community in maize stalk induced by Trichoderma asperellum biocontrol agent against Fusarium diseases and mycotoxin accumulation. He A; Sun J; Wang X; Zou L; Fu B; Chen J Fungal Biol; 2019 Jun; 123(6):448-455. PubMed ID: 31126421 [TBL] [Abstract][Full Text] [Related]
34. Genomic selection to resistance to Stenocarpella maydis in maize lines using DArTseq markers. Dos Santos JP; Pires LP; de Castro Vasconcellos RC; Pereira GS; Von Pinho RG; Balestre M BMC Genet; 2016 Jun; 17(1):86. PubMed ID: 27316946 [TBL] [Abstract][Full Text] [Related]
35. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance. Chalivendra SC; DeRobertis C; Chang PK; Damann KE Mol Plant Microbe Interact; 2017 May; 30(5):361-373. PubMed ID: 28447887 [TBL] [Abstract][Full Text] [Related]
36. Aspergillus flavus YRB2 from Thymelaea hirsuta (L.) Endl., a non-aflatoxigenic endophyte with ability to overexpress defense-related genes against Fusarium root rot of maize. Rashad YM; Abdalla SA; Shehata AS BMC Microbiol; 2022 Sep; 22(1):229. PubMed ID: 36175855 [TBL] [Abstract][Full Text] [Related]
37. Isolation of bacteria with antifungal activity against the phytopathogenic fungi Stenocarpella maydis and Stenocarpella macrospora. Petatán-Sagahón I; Anducho-Reyes MA; Silva-Rojas HV; Arana-Cuenca A; Tellez-Jurado A; Cárdenas-Álvarez IO; Mercado-Flores Y Int J Mol Sci; 2011; 12(9):5522-37. PubMed ID: 22016606 [TBL] [Abstract][Full Text] [Related]
38. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419 [TBL] [Abstract][Full Text] [Related]
39. Rhamnolipid Biosurfactant against Borah SN; Goswami D; Sarma HK; Cameotra SS; Deka S Front Microbiol; 2016; 7():1505. PubMed ID: 27708638 [TBL] [Abstract][Full Text] [Related]
40. Antifungal activity of a virally encoded gene in transgenic wheat. Clausen M; Kräuter R; Schachermayr G; Potrykus I; Sautter C Nat Biotechnol; 2000 Apr; 18(4):446-9. PubMed ID: 10748529 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]