These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. PCR assay for differentiating between Group I (proteolytic) and Group II (nonproteolytic) strains of Clostridium botulinum. Dahlsten E; Korkeala H; Somervuo P; Lindström M Int J Food Microbiol; 2008 May; 124(1):108-11. PubMed ID: 18374440 [TBL] [Abstract][Full Text] [Related]
24. Application of high-density DNA resequencing microarray for detection and characterization of botulinum neurotoxin-producing clostridia. Vanhomwegen J; Berthet N; Mazuet C; Guigon G; Vallaeys T; Stamboliyska R; Dubois P; Kennedy GC; Cole ST; Caro V; Manuguerra JC; Popoff MR PLoS One; 2013; 8(6):e67510. PubMed ID: 23818983 [TBL] [Abstract][Full Text] [Related]
25. High prevalence of Clostridium botulinum in vegetarian sausages. Pernu N; Keto-Timonen R; Lindström M; Korkeala H Food Microbiol; 2020 Oct; 91():103512. PubMed ID: 32539985 [TBL] [Abstract][Full Text] [Related]
26. A study of the effect of ionizing radiation on resistance, germination, and toxin synthesis of Clostridium botulinum spores, types A, B, and E. COO-1095-3. Graikoski JT; Kempe LL COO Rep; 1966 Jan; ():1-100. PubMed ID: 4312998 [No Abstract] [Full Text] [Related]
27. Quantitative risk assessment for hazards that arise from non-proteolytic Clostridium botulinum in minimally processed chilled dairy-based foods. Malakar PK; Barker GC; Peck MW Food Microbiol; 2011 Apr; 28(2):321-30. PubMed ID: 21315990 [TBL] [Abstract][Full Text] [Related]
29. Development and application of Real-Time PCR assays to detect fragments of the Clostridium botulinum types A, B, and E neurotoxin genes for investigation of human foodborne and infant botulism. Akbulut D; Grant KA; McLauchlin J Foodborne Pathog Dis; 2004; 1(4):247-57. PubMed ID: 15992287 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan. Nakamura K; Kohda T; Umeda K; Yamamoto H; Mukamoto M; Kozaki S Vet Microbiol; 2010 Jan; 140(1-2):147-54. PubMed ID: 19720474 [TBL] [Abstract][Full Text] [Related]
31. Challenges in risk assessment and predictive microbiology of foodborne spore-forming bacteria. Augustin JC Food Microbiol; 2011 Apr; 28(2):209-13. PubMed ID: 21315975 [TBL] [Abstract][Full Text] [Related]
32. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. Carter AT; Paul CJ; Mason DR; Twine SM; Alston MJ; Logan SM; Austin JW; Peck MW BMC Genomics; 2009 Mar; 10():115. PubMed ID: 19298644 [TBL] [Abstract][Full Text] [Related]
33. Effects of carbon dioxide on growth of proteolytic Clostridium botulinum, its ability to produce neurotoxin, and its transcriptome. Artin I; Mason DR; Pin C; Schelin J; Peck MW; Holst E; Rådström P; Carter AT Appl Environ Microbiol; 2010 Feb; 76(4):1168-72. PubMed ID: 20038699 [TBL] [Abstract][Full Text] [Related]
37. Laboratory diagnostics of botulism. Lindström M; Korkeala H Clin Microbiol Rev; 2006 Apr; 19(2):298-314. PubMed ID: 16614251 [TBL] [Abstract][Full Text] [Related]
38. Variations in expression and release of botulinum neurotoxin in Clostridium botulinum type A strains. Rao S; Starr RL; Morris MG; Lin WJ Foodborne Pathog Dis; 2007; 4(2):201-7. PubMed ID: 17600487 [TBL] [Abstract][Full Text] [Related]
39. [Sporogenesis of Clostridium botulinum and its regularities]. Donets' Iuĭ Mikrobiol Zh; 1976; 38(6):780-5. PubMed ID: 794649 [No Abstract] [Full Text] [Related]
40. Growth and toxin production by Clostridium botulinum in steamed rice aseptically packed under modified atmosphere. Kasai Y; Kimura B; Kawasaki S; Fukaya T; Sakuma K; Fujii T J Food Prot; 2005 May; 68(5):1005-11. PubMed ID: 15895734 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]