BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21315990)

  • 1. Quantitative risk assessment for hazards that arise from non-proteolytic Clostridium botulinum in minimally processed chilled dairy-based foods.
    Malakar PK; Barker GC; Peck MW
    Food Microbiol; 2011 Apr; 28(2):321-30. PubMed ID: 21315990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic representation of the exposure of consumers to Clostridium botulinum neurotoxin in a minimally processed potato product.
    Barker GC; Malakar PK; Del Torre M; Stecchini ML; Peck MW
    Int J Food Microbiol; 2005 Apr; 100(1-3):345-57. PubMed ID: 15854717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing.
    Lindström M; Kiviniemi K; Korkeala H
    Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin.
    Del Torre M; Stecchini ML; Braconnier A; Peck MW
    Int J Food Microbiol; 2004 Nov; 96(2):115-31. PubMed ID: 15364467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Germination and growth from spores: variability and uncertainty in the assessment of food borne hazards.
    Barker GC; Malakar PK; Peck MW
    Int J Food Microbiol; 2005 Apr; 100(1-3):67-76. PubMed ID: 15854693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of sensitivity analysis to aid interpretation of a probabilistic Bacillus cereus spore lag time model applied to heat-treated chilled foods (REPFEDs).
    Membré JM; Kan-King-Yu D; Blackburn Cde W
    Int J Food Microbiol; 2008 Nov; 128(1):28-33. PubMed ID: 18691785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M
    Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk assessment of proteolytic Clostridium botulinum in canned foie gras.
    Membré JM; Diao M; Thorin C; Cordier G; Zuber F; André S
    Int J Food Microbiol; 2015 Oct; 210():62-72. PubMed ID: 26093992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium botulinum in the post-genomic era.
    Peck MW; Stringer SC; Carter AT
    Food Microbiol; 2011 Apr; 28(2):183-91. PubMed ID: 21315972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges in risk assessment and predictive microbiology of foodborne spore-forming bacteria.
    Augustin JC
    Food Microbiol; 2011 Apr; 28(2):209-13. PubMed ID: 21315975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The prevalence of Clostridium botulinum in European river lamprey (Lampetra fluviatilis) in Finland.
    Merivirta LO; Lindström M; Björkroth KJ; Korkeala HJ
    Int J Food Microbiol; 2006 Jun; 109(3):234-7. PubMed ID: 16504325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clostridium botulinum in cattle and dairy products.
    Lindström M; Myllykoski J; Sivelä S; Korkeala H
    Crit Rev Food Sci Nutr; 2010 Apr; 50(4):281-304. PubMed ID: 20301016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on factors allowing a risk assessment of spore-forming pathogenic bacteria in cooked chilled foods containing vegetables: a FAIR collaborative project.
    Carlin F; Girardin H; Peck MW; Stringer SC; Barker GC; Martinez A; Fernandez A; Fernandez P; Waites WM; Movahedi S; van Leusden F; Nauta M; Moezelaar R; Torre MD; Litman S
    Int J Food Microbiol; 2000 Sep; 60(2-3):117-35. PubMed ID: 11016602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations.
    Mataragas M; Skandamis PN; Drosinos EH
    Int J Food Microbiol; 2008 Aug; 126(1-2):1-12. PubMed ID: 18602180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the frequency and duration of microbial contamination events.
    Powell MR
    Int J Food Microbiol; 2006 Jul; 110(1):93-9. PubMed ID: 16690153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods.
    Afchain AL; Carlin F; Nguyen-The C; Albert I
    Int J Food Microbiol; 2008 Nov; 128(1):165-73. PubMed ID: 18805600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence of Clostridium botulinum in food raw materials used in REPFEDs manufactured in France.
    Carlin F; Broussolle V; Perelle S; Litman S; Fach P
    Int J Food Microbiol; 2004 Mar; 91(2):141-5. PubMed ID: 14996457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-lactic acid, contaminating microbial flora in ready-to-eat foods: a potential food-quality index.
    Angelidis AS; Chronis EN; Papageorgiou DK; Kazakis II; Arsenoglou KC; Stathopoulos GA
    Food Microbiol; 2006 Feb; 23(1):95-100. PubMed ID: 16942992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue?
    Peck MW
    J Appl Microbiol; 2006 Sep; 101(3):556-70. PubMed ID: 16907806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spore-formers in foods and the food processing chain.
    te Giffel MC
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):517-22. PubMed ID: 15954647
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.