BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21316302)

  • 1. An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments.
    Chandran A; Varghese S; Kandeler E; Thomas A; Hatha M; Mazumder A
    Int J Hyg Environ Health; 2011 Jun; 214(3):258-64. PubMed ID: 21316302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements.
    Craig DL; Fallowfield HJ; Cromar NJ
    J Appl Microbiol; 2004; 96(5):922-30. PubMed ID: 15078507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased prevalence of indicator and pathogenic bacteria in Vembanadu Lake: a function of salt water regulator, along south west coast of India.
    Chandran A; Hatha AA; Varghese S
    J Water Health; 2008 Dec; 6(4):539-46. PubMed ID: 18401119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of recreation on recreational water quality of a small tropical stream.
    Phillip DA; Antoine P; Cooper V; Francis L; Mangal E; Seepersad N; Ragoo R; Ramsaran S; Singh I; Ramsubhag A
    J Environ Monit; 2009 Jun; 11(6):1192-8. PubMed ID: 19513450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of guideline faecal indicator organism values in estimation of exposure risk at recreational coastal sites.
    Craig DL; Fallowfield HJ; Cromar NJ
    Water Sci Technol; 2003; 47(3):191-8. PubMed ID: 12639028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment.
    Perkins TL; Clements K; Baas JH; Jago CF; Jones DL; Malham SK; McDonald JE
    PLoS One; 2014; 9(11):e112951. PubMed ID: 25397595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of pathogenic bacteria in water and sediment from a water reservoir under tropical conditions (Lake Ma Vallée), Kinshasa Democratic Republic of Congo.
    Mwanamoki PM; Devarajan N; Thevenon F; Atibu EK; Tshibanda JB; Ngelinkoto P; Mpiana PT; Prabakar K; Mubedi JI; Kabele CG; Wildi W; Poté J
    Environ Monit Assess; 2014 Oct; 186(10):6821-30. PubMed ID: 24981879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sediment-water exchange of Vibrio sp. and fecal indicator bacteria: implications for persistence and transport in the Neuse River Estuary, North Carolina, USA.
    Fries JS; Characklis GW; Noble RT
    Water Res; 2008 Feb; 42(4-5):941-50. PubMed ID: 17945328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.
    Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL
    Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of microbial community between two shallow freshwater lakes in middle Yangtze basin, East China.
    Tong Y; Lin G; Ke X; Liu F; Zhu G; Gao G; Shen J
    Chemosphere; 2005 Jun; 60(1):85-92. PubMed ID: 15910906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of manure-borne E. coli in streambed sediment: effects of temperature and sediment properties.
    Garzio-Hadzick A; Shelton DR; Hill RL; Pachepsky YA; Guber AK; Rowland R
    Water Res; 2010 May; 44(9):2753-62. PubMed ID: 20219232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Faecal-indicator bacteria and sedimentary processes in estuarine mudflats (Seine, France).
    Berthe T; Touron A; Leloup J; Deloffre J; Petit F
    Mar Pollut Bull; 2008; 57(1-5):59-67. PubMed ID: 18036620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions.
    Chen W; Song L; Peng L; Wan N; Zhang X; Gan N
    Water Res; 2008 Feb; 42(3):763-73. PubMed ID: 17761208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension.
    Abia ALK; Ubomba-Jaswa E; Genthe B; Momba MNB
    Sci Total Environ; 2016 Oct; 566-567():1143-1151. PubMed ID: 27297265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the source of fecal contamination in recreational waters.
    Meyer KJ; Appletoft CM; Schwemm AK; Uzoigwe JC; Brown EJ
    J Environ Health; 2005; 68(1):25-30. PubMed ID: 16121484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, Lake Taihu, as revealed by denaturing gradient gel electrophoresis.
    Liu FH; Lin GH; Gao G; Qin BQ; Zhang JS; Zhao GP; Zhou ZH; Shen JH
    J Appl Microbiol; 2009 Mar; 106(3):1022-32. PubMed ID: 19191955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the dry-weather tidal cycling of fecal indicator bacteria in surface waters of an intertidal wetland.
    Sanders BF; Arega F; Sutula M
    Water Res; 2005 Sep; 39(14):3394-408. PubMed ID: 16051310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments.
    Duhamel S; Jacquet S
    J Microbiol Methods; 2006 Mar; 64(3):316-32. PubMed ID: 16081175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogen and Surrogate Survival in Relation to Fecal Indicator Bacteria in Freshwater Mesocosms.
    Baker CA; Almeida G; Lee JA; Gibson KE
    Appl Environ Microbiol; 2021 Jul; 87(15):e0055821. PubMed ID: 34047635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.