BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21316378)

  • 1. Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia.
    Urbina MA; Forster ME; Glover CN
    Physiol Behav; 2011 May; 103(2):240-7. PubMed ID: 21316378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Should I stay or should I go?: Physiological, metabolic and biochemical consequences of voluntary emersion upon aquatic hypoxia in the scaleless fish Galaxias maculatus.
    Urbina MA; Glover CN
    J Comp Physiol B; 2012 Dec; 182(8):1057-67. PubMed ID: 22645056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of cutaneous gas exchange during aerial and aquatic respiration in galaxiids.
    Urbina MA; Meredith AS; Glover CN; Forster ME
    J Fish Biol; 2014 Mar; 84(3):759-73. PubMed ID: 24417441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel oxyconforming response in the freshwater fish Galaxias maculatus.
    Urbina MA; Glover CN; Forster ME
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Mar; 161(3):301-6. PubMed ID: 22138470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and biochemical strategies for withstanding emersion in two galaxiid fishes.
    Urbina MA; Walsh PJ; Hill JV; Glover CN
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():49-58. PubMed ID: 25026541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure.
    Turko AJ; Robertson CE; Bianchini K; Freeman M; Wright PA
    J Exp Biol; 2014 Nov; 217(Pt 22):3988-95. PubMed ID: 25267849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of waterborne cadmium on metabolic rate, oxidative stress, and ion regulation in the freshwater fish, inanga (Galaxias maculatus).
    McRae NK; Gaw S; Glover CN
    Aquat Toxicol; 2018 Jan; 194():1-9. PubMed ID: 29120705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between fish size and metabolic rate in the oxyconforming inanga Galaxias maculatus reveals size-dependent strategies to withstand hypoxia.
    Urbina MA; Glover CN
    Physiol Biochem Zool; 2013; 86(6):740-9. PubMed ID: 24241070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of respiration between the gills and air-breathing organ in response to aquatic hypoxia and exercise in the pacific tarpon, Megalops cyprinoides.
    Seymour RS; Christian K; Bennett MB; Baldwin J; Wells RM; Baudinette RV
    Physiol Biochem Zool; 2004; 77(5):760-7. PubMed ID: 15547794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerial and aquatic respiration of the Australian desert goby, Chlamydogobius eremius.
    Thompson GG; Withers PC
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Apr; 131(4):871-9. PubMed ID: 11897198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of diel-cycling hypoxia acclimation on the hypoxia tolerance, swimming capacity and growth performance of southern catfish (Silurus meridionalis).
    Yang H; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Jun; 165(2):131-8. PubMed ID: 23474254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High risk no gain-metabolic performance of hatchery reared Atlantic salmon smolts, effects of nest emergence time, hypoxia avoidance behaviour and size.
    Rosengren M; Thörnqvist PO; Johnsson JI; Sandblom E; Winberg S; Sundell K
    Physiol Behav; 2017 Jun; 175():104-112. PubMed ID: 28342770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the habitation of acidic-water sanctuaries by galaxiid fish facilitated by natural organic matter modification of sodium metabolism?
    Glover CN; Donovan KA; Hill JV
    Physiol Biochem Zool; 2012; 85(5):460-9. PubMed ID: 22902374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circulating catecholamines and cardiorespiratory responses in hypoxic lungfish (Protopterus dolloi): a comparison of aquatic and aerial hypoxia.
    Perry SF; Gilmour KM; Vulesevic B; McNeill B; Chew SF; Ip YK
    Physiol Biochem Zool; 2005; 78(3):325-34. PubMed ID: 15887079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia acclimation increases novelty response strength during fast-starts in the African mormyrid, Marcusenius victoriae.
    Ackerly KL; Chapman LJ; Krahe R
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Nov; 213():36-45. PubMed ID: 28844972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioural, physiological and biochemical responses to aquatic hypoxia in the freshwater crayfish, Paranephrops zealandicus.
    Broughton RJ; Marsden ID; Hill JV; Glover CN
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Oct; 212():72-80. PubMed ID: 28756185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroepithelial cells and the hypoxia emersion response in the amphibious fish Kryptolebias marmoratus.
    Regan KS; Jonz MG; Wright PA
    J Exp Biol; 2011 Aug; 214(Pt 15):2560-8. PubMed ID: 21753050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.
    Alton LA; Portugal SJ; White CR
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Feb; 164(2):363-7. PubMed ID: 23178457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiorespiratory physiological phenotypic plasticity in developing air-breathing anabantid fishes (
    Mendez-Sanchez JF; Burggren WW
    Physiol Rep; 2017 Aug; 5(15):. PubMed ID: 28778991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological responses to prolonged aquatic hypoxia in the Queensland lungfish Neoceratodus forsteri.
    Kind PK; Grigg GC; Booth DT
    Respir Physiol Neurobiol; 2002 Aug; 132(2):179-90. PubMed ID: 12161331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.