These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 21316490)
1. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Dånmark S; Finne-Wistrand A; Schander K; Hakkarainen M; Arvidson K; Mustafa K; Albertsson AC Acta Biomater; 2011 May; 7(5):2035-46. PubMed ID: 21316490 [TBL] [Abstract][Full Text] [Related]
2. The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Odelius K; Plikk P; Albertsson AC Biomaterials; 2008 Jan; 29(2):129-40. PubMed ID: 17936898 [TBL] [Abstract][Full Text] [Related]
3. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester. Odelius K; Plikk P; Albertsson AC Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111 [TBL] [Abstract][Full Text] [Related]
4. Finalizing the properties of porous scaffolds of aliphatic polyesters through radiation sterilization. Plikk P; Odelius K; Hakkarainen M; Albertsson AC Biomaterials; 2006 Nov; 27(31):5335-47. PubMed ID: 16846641 [TBL] [Abstract][Full Text] [Related]
5. Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds: an in vitro study. Xue Y; Dånmark S; Xing Z; Arvidson K; Albertsson AC; Hellem S; Finne-Wistrand A; Mustafa K J Biomed Mater Res A; 2010 Dec; 95(4):1244-51. PubMed ID: 20939051 [TBL] [Abstract][Full Text] [Related]
6. Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells. Idris SB; Arvidson K; Plikk P; Ibrahim S; Finne-Wistrand A; Albertsson AC; Bolstad AI; Mustafa K J Biomed Mater Res A; 2010 Aug; 94(2):631-9. PubMed ID: 20205238 [TBL] [Abstract][Full Text] [Related]
7. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells. Sun Y; Xing Z; Xue Y; Mustafa K; Finne-Wistrand A; Albertsson AC Biomacromolecules; 2014 Apr; 15(4):1259-68. PubMed ID: 24559372 [TBL] [Abstract][Full Text] [Related]
8. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726 [TBL] [Abstract][Full Text] [Related]
9. Global gene expression profile of osteoblast-like cells grown on polyester copolymer scaffolds. Idris SB; Bolstad AI; Ibrahim SO; Dånmark S; Finne-Wistrand A; Albertsson AC; Arvidson K; Mustafa K Tissue Eng Part A; 2011 Nov; 17(21-22):2817-31. PubMed ID: 21905880 [TBL] [Abstract][Full Text] [Related]
10. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites. Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable polymer scaffolds loaded with low-dose BMP-2 stimulate periodontal ligament cell differentiation. Skodje A; Idris SB; Sun Y; Bartaula S; Mustafa K; Finne-Wistrand A; Wikesjö UM; Leknes KN J Biomed Mater Res A; 2015 Jun; 103(6):1991-8. PubMed ID: 25231842 [TBL] [Abstract][Full Text] [Related]
12. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone). Bramfeldt H; Sarazin P; Vermette P J Biomed Mater Res A; 2007 Nov; 83(2):503-11. PubMed ID: 17503493 [TBL] [Abstract][Full Text] [Related]
13. Alkaline and enzymatic degradation of L-lactide copolymers, 1. Amorphous-made films of L-lactide copolymers with D-lactide, glycolide, and epsilon-caprolactone. Tsuji H; Tezuka Y Macromol Biosci; 2005 Feb; 5(2):135-48. PubMed ID: 15729721 [TBL] [Abstract][Full Text] [Related]
14. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444 [TBL] [Abstract][Full Text] [Related]
15. Effect of endothelial cells on bone regeneration using poly(L-lactide-co-1,5-dioxepan-2-one) scaffolds. Xing Z; Xue Y; Dånmark S; Schander K; Ostvold S; Arvidson K; Hellem S; Finne-Wistrand A; Albertsson AC; Mustafa K J Biomed Mater Res A; 2011 Feb; 96(2):349-57. PubMed ID: 21171154 [TBL] [Abstract][Full Text] [Related]
16. Porous scaffolds from high molecular weight polyesters synthesized via enzyme-catalyzed ring-opening polymerization. Srivastava RK; Albertsson AC Biomacromolecules; 2006 Sep; 7(9):2531-8. PubMed ID: 16961314 [TBL] [Abstract][Full Text] [Related]
17. Resilient bioresorbable copolymers based on trimethylene carbonate, L-lactide, and 1,5-dioxepan-2-one. Andronova N; Albertsson AC Biomacromolecules; 2006 May; 7(5):1489-95. PubMed ID: 16677030 [TBL] [Abstract][Full Text] [Related]
18. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field. Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. Zhang K; Wang H; Huang C; Su Y; Mo X; Ikada Y J Biomed Mater Res A; 2010 Jun; 93(3):984-93. PubMed ID: 19722280 [TBL] [Abstract][Full Text] [Related]
20. Resorbable and highly elastic block copolymers from 1,5-dioxepan-2-one and L-lactide with controlled tensile properties and hydrophilicity. Ryner M; Albertsson AC Biomacromolecules; 2002; 3(3):601-8. PubMed ID: 12005533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]