These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21316615)

  • 1. Mechanical characterization of the softening behavior of human vaginal tissue.
    Peña E; Martins P; Mascarenhas T; Natal Jorge RM; Ferreira A; Doblaré M; Calvo B
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):275-83. PubMed ID: 21316615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of nonlinear elastic behaviour of vaginal tissue: experimental results and model formulation.
    Martins P; Peña E; Calvo B; Doblaré M; Mascarenhas T; Natal Jorge R; Ferreira A
    Comput Methods Biomech Biomed Engin; 2010 Jun; 13(3):327-37. PubMed ID: 20146131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue.
    Maher E; Creane A; Lally C; Kelly DJ
    J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue.
    Peña E; Calvo B; Martínez MA; Martins P; Mascarenhas T; Jorge RM; Ferreira A; Doblaré M
    Biomech Model Mechanobiol; 2010 Feb; 9(1):35-44. PubMed ID: 19418081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonlinear-elastic constitutive model for soft connective tissue based on a histologic description: Application to female pelvic soft tissue.
    Brieu M; Chantereau P; Gillibert J; de Landsheere L; Lecomte P; Cosson M
    J Mech Behav Biomed Mater; 2016 May; 58():65-74. PubMed ID: 26482594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On modelling damage process in vaginal tissue.
    Calvo B; Peña E; Martins P; Mascarenhas T; Doblaré M; Natal Jorge RM; Ferreira A
    J Biomech; 2009 Mar; 42(5):642-51. PubMed ID: 19162267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical properties of human pelvic organs.
    Rubod C; Brieu M; Cosson M; Rivaux G; Clay JC; de Landsheere L; Gabriel B
    Urology; 2012 Apr; 79(4):968.e17-22. PubMed ID: 22245302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical characterization and constitutive modelling of the damage process in rectus sheath.
    Martins P; Peña E; Jorge RM; Santos A; Santos L; Mascarenhas T; Calvo B
    J Mech Behav Biomed Mater; 2012 Apr; 8():111-22. PubMed ID: 22402158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking hyperelastic theoretical models and experimental data of vaginal tissue through histological data.
    Rynkevic R; Ferreira J; Martins P; Parente M; Fernandes AA
    J Biomech; 2019 Jan; 82():271-279. PubMed ID: 30466952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical properties of vaginal tissue: preliminary results.
    Rubod C; Boukerrou M; Brieu M; Jean-Charles C; Dubois P; Cosson M
    Int Urogynecol J Pelvic Floor Dysfunct; 2008 Jun; 19(6):811-6. PubMed ID: 18188492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biomechanics of stress distribution and resistance of biological tissues: why use prostheses for the treatment of genital prolapse?].
    Cosson M; Boukerrou M; Lambaudie E; Lobry P; Crépin G; Ego A
    J Gynecol Obstet Biol Reprod (Paris); 2003 Jun; 32(4):329-37. PubMed ID: 12843881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biaxial Mechanical Assessment of the Murine Vaginal Wall Using Extension-Inflation Testing.
    Robison KM; Conway CK; Desrosiers L; Knoepp LR; Miller KS
    J Biomech Eng; 2017 Oct; 139(10):1045041-8. PubMed ID: 28787477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues.
    Zhu Y; Kang G; Kan Q; Yu C
    J Biomech; 2014 Mar; 47(5):996-1003. PubMed ID: 24462380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping.
    Fereidoonnezhad B; Naghdabadi R; Holzapfel GA
    J Mech Behav Biomed Mater; 2016 Aug; 61():600-616. PubMed ID: 27233103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A constitutive description of the anisotropic response of the fascia lata.
    Pancheri FQ; Eng CM; Lieberman DE; Biewener AA; Dorfmann L
    J Mech Behav Biomed Mater; 2014 Feb; 30():306-23. PubMed ID: 24361935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and histological characterization of the abdominal muscle. A previous step to modelling hernia surgery.
    Hernández B; Peña E; Pascual G; Rodríguez M; Calvo B; Doblaré M; Bellón JM
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):392-404. PubMed ID: 21316627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination and modeling of the inelasticity over the length of the porcine carotid artery.
    García A; Martínez MA; Peña E
    J Biomech Eng; 2013 Mar; 135(3):31004. PubMed ID: 24231815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constitutive model for muscle properties in a soft-bodied arthropod.
    Dorfmann A; Trimmer BA; Woods WA
    J R Soc Interface; 2007 Apr; 4(13):257-69. PubMed ID: 17251157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.