BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21316633)

  • 1. Mechanical study of PLA-PCL fibers during in vitro degradation.
    Vieira AC; Vieira JC; Ferra JM; Magalhães FD; Guedes RM; Marques AT
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):451-60. PubMed ID: 21316633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters.
    Antheunis H; van der Meer JC; de Geus M; Heise A; Koning CE
    Biomacromolecules; 2010 Apr; 11(4):1118-24. PubMed ID: 20187614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends.
    Takayama T; Todo M; Tsuji H
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):255-60. PubMed ID: 21316612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polylactic acid (PLA): research, development and industrialization.
    Pang X; Zhuang X; Tang Z; Chen X
    Biotechnol J; 2010 Nov; 5(11):1125-36. PubMed ID: 21058315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique.
    Esmaeilzadeh J; Hesaraki S; Hadavi SM; Esfandeh M; Ebrahimzadeh MH
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():807-819. PubMed ID: 27987776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research progresses on degradation mechanism in vivo and medical applications of polylactic acid].
    Liu JW; Zhao Q; Wan CX
    Space Med Med Eng (Beijing); 2001 Aug; 14(4):308-12. PubMed ID: 11681349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone).
    Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L
    Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the properties of linear PLA-poloxamer and star PLA-poloxamine copolymers for temporary biomedical applications.
    Leroy A; Pinese C; Bony C; Garric X; Noël D; Nottelet B; Coudane J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4133-9. PubMed ID: 23910324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation.
    Chen Y; Song Y; Zhang S; Li J; Zhao C; Zhang X
    Biomed Mater; 2011 Apr; 6(2):025005. PubMed ID: 21358027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated weathering-induced degradation of poly(lactic acid) fiber studied by near-infrared (NIR) hyperspectral imaging.
    Shinzawa H; Nishida M; Tanaka T; Kanematsu W
    Appl Spectrosc; 2012 Apr; 66(4):470-4. PubMed ID: 22449331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals.
    Shi Q; Zhou C; Yue Y; Guo W; Wu Y; Wu Q
    Carbohydr Polym; 2012 Sep; 90(1):301-8. PubMed ID: 24751045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid.
    Georgiopoulos P; Kontou E; Meristoudi A; Pispas S; Chatzinikolaidou M
    J Biomater Appl; 2014 Nov; 29(5):662-74. PubMed ID: 25091863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and biodegradable properties of porous titanium filled with poly-L-lactic acid by modified in situ polymerization technique.
    Nakai M; Niinomi M; Ishii D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1206-18. PubMed ID: 21783129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage-induced hydrolyses modelling of biodegradable polymers for tendons and ligaments repair.
    Vieira AC; Guedes RM; Tita V
    J Biomech; 2015 Sep; 48(12):3478-85. PubMed ID: 26303168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability.
    Shomura Y; Tanigawa N; Tokuda T; Kariya S; Kojima H; Komemushi A; Sawada S
    Acta Radiol; 2009 May; 50(4):355-9. PubMed ID: 19306137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass.
    Navarro M; Ginebra MP; Planell JA; Barrias CC; Barbosa MA
    Acta Biomater; 2005 Jul; 1(4):411-9. PubMed ID: 16701822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of static and dynamic loading on degradation of PLLA stent fibers.
    Hayman D; Bergerson C; Miller S; Moreno M; Moore JE
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24805843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water absorption and degradation characteristics of chitosan-based polyesters and hydroxyapatite composites.
    Correlo VM; Pinho ED; Pashkuleva I; Bhattacharya M; Neves NM; Reis RL
    Macromol Biosci; 2007 Mar; 7(3):354-63. PubMed ID: 17370274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jointly modified mechanical properties and accelerated hydrolytic degradation of PLA by interface reinforcement of PLA-WF.
    Wan L; Zhang Y
    J Mech Behav Biomed Mater; 2018 Dec; 88():223-230. PubMed ID: 30193180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus.
    Soares JS; Rajagopal KR; Moore JE
    Biomech Model Mechanobiol; 2010 Apr; 9(2):177-86. PubMed ID: 19680702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.