These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21316633)

  • 21. Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites.
    Kumar M; Mohanty S; Nayak SK; Rahail Parvaiz M
    Bioresour Technol; 2010 Nov; 101(21):8406-15. PubMed ID: 20573502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in mechanical properties of poly-l-lactic acid mini-plate under functional load simulating sagittal splitting ramus osteotomy.
    Mizuhashi H; Suga K; Uchiyama T; Oda Y
    Int J Oral Maxillofac Surg; 2008 Feb; 37(2):162-9. PubMed ID: 18023560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG.
    Mei T; Zhu Y; Ma T; He T; Li L; Wei C; Xu K
    J Biomed Mater Res A; 2014 Sep; 102(9):3243-54. PubMed ID: 24133043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of hydrophobic coatings in biodegradable devices.
    Meng J; Li H; Gao Y; Xu H; Gu H; Chang J
    Biomed Mater Eng; 2015; 25(1):77-88. PubMed ID: 25585982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications.
    Hutmacher D; Hürzeler MB; Schliephake H
    Int J Oral Maxillofac Implants; 1996; 11(5):667-78. PubMed ID: 8908867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers.
    Cohn D; Salomon AH
    Biomaterials; 2005 May; 26(15):2297-305. PubMed ID: 15585232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PLA/chitosan/keratin composites for biomedical applications.
    Tanase CE; Spiridon I
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():242-7. PubMed ID: 24857489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [A novel orthopaedic biodegradable polymer and its biocompatibility].
    Liu J; Qi X; Guan J; Xu X; Chen X; Jing X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):25-9. PubMed ID: 15762108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical, biological, and microstructural properties of biodegradable models of polymeric stents made of PLLA and alginate fibers.
    Bartkowiak-Jowsa M; Będziński R; Szaraniec B; Chłopek J
    Acta Bioeng Biomech; 2011; 13(4):21-8. PubMed ID: 22339177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers.
    Xiong X; Li Q; Lu JW; Guo ZX; Sun ZH; Yu J
    J Biomater Sci Polym Ed; 2012; 23(9):1217-30. PubMed ID: 21639995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [In vitro study of the properties of bioresorbable lactic acid polymer materials].
    Merloz P; Minfelde R; Schelp C; Lavaste F; Huet-Olivier J; Faure C; Butel J
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(5):433-44. PubMed ID: 8560013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites.
    Xu H; Liu CY; Chen C; Hsiao BS; Zhong GJ; Li ZM
    Biopolymers; 2012 Oct; 97(10):825-39. PubMed ID: 22806502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: influence of the filler content on the fiber properties.
    Persson M; Lorite GS; Cho SW; Tuukkanen J; Skrifvars M
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6864-72. PubMed ID: 23848437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical and hydrolytic properties of thin polylactic acid films by fused filament fabrication.
    Ekinci A; Gleadall A; Johnson AA; Li L; Han X
    J Mech Behav Biomed Mater; 2021 Feb; 114():104217. PubMed ID: 33246876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystallization study and comparative in vitro-in vivo hydrolysis of PLA reinforcement ligament.
    Beslikas T; Gigis I; Goulios V; Christoforides J; Papageorgiou GZ; Bikiaris DN
    Int J Mol Sci; 2011; 12(10):6597-618. PubMed ID: 22072906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)--thermodynamics of micellization and hydrolytic degradation.
    Loh XJ; Tan YX; Li Z; Teo LS; Goh SH; Li J
    Biomaterials; 2008 May; 29(14):2164-72. PubMed ID: 18276002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiscale modelling for the heterogeneous strength of biodegradable polyesters.
    Zhang T; Jin G; Han X; Gao Y; Zeng Q; Hou B; Zhang D
    J Mech Behav Biomed Mater; 2019 Feb; 90():337-349. PubMed ID: 30399563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradability evaluation of polymers by ISO 14855-2.
    Funabashi M; Ninomiya F; Kunioka M
    Int J Mol Sci; 2009 Aug; 10(8):3635-3654. PubMed ID: 20111676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers.
    Peng F; Shaw MT; Olson JR; Wei M
    J Biomater Appl; 2013 Feb; 27(6):641-9. PubMed ID: 22274879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing biodegradation of PLA and PLA-g-AA/starch films using a phosphate-solubilizing bacillus species.
    Wu CS
    Macromol Biosci; 2008 Jun; 8(6):560-7. PubMed ID: 18322910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.