BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21316635)

  • 1. Prediction of mechanical properties of composites of HDPE/HA/EAA.
    Albano C; Perera R; Cataño L; Karam A; González G
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):467-75. PubMed ID: 21316635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.
    Liu H; Wu Q; Zhang Q
    Bioresour Technol; 2009 Dec; 100(23):6088-97. PubMed ID: 19574041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.
    Alothman OY; Almajhdi FN; Fouad H
    Biomed Eng Online; 2013 Sep; 12():95. PubMed ID: 24059280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of filler surface morphology on the impact behaviour of hydroxyapatite reinforced high density polyethylene composites.
    Zhang Y; Tanner KE
    J Mater Sci Mater Med; 2008 Feb; 19(2):761-6. PubMed ID: 17619972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and apatite forming ability of TiO2 nanoparticles/high density polyethylene composite: Effect of filler content.
    Hashimoto M; Takadama H; Mizuno M; Kokubo T
    J Mater Sci Mater Med; 2007 Apr; 18(4):661-8. PubMed ID: 17546429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.
    Alothman OY; Fouad H; Al-Zahrani SM; Eshra A; Al Rez MF; Ansari SG
    Biomed Eng Online; 2014 Aug; 13():125. PubMed ID: 25168723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toughening mechanisms in iron-containing hydroxyapatite/titanium composites.
    Chang Q; Chen DL; Ru HQ; Yue XY; Yu L; Zhang CP
    Biomaterials; 2010 Mar; 31(7):1493-501. PubMed ID: 19954836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically coupled hydroxyapatite-polyethylene composites: structure and properties.
    Wang M; Bonfield W
    Biomaterials; 2001 Jun; 22(11):1311-20. PubMed ID: 11336303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites.
    Sadi AY; Homaeigohar SSh; Khavandi AR; Javadpour J
    J Mater Sci Mater Med; 2004 Aug; 15(8):853-8. PubMed ID: 15477736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical, rheological, and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite.
    Ahmad M; Uzir Wahit M; Abdul Kadir MR; Mohd Dahlan KZ
    ScientificWorldJournal; 2012; 2012():474851. PubMed ID: 22666129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene.
    Gong XH; Tang CY; Hu HC; Zhou XP; Xie XL
    J Mater Sci Mater Med; 2004 Oct; 15(10):1141-6. PubMed ID: 15516876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High density polyethylene/graphite nano-composites for total hip joint replacements: processing and in vitro characterization.
    Fouad H; Elleithy R
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1376-83. PubMed ID: 21783148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L; Leng Y; Gao P
    Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics study of Young's modulus change of semi-crystalline polymers during degradation by chain scissions.
    Ding L; Davidchack RL; Pan J
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):224-30. PubMed ID: 22100097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
    Converse GL; Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):627-35. PubMed ID: 19716108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites.
    Roeder RK; Sproul MM; Turner CH
    J Biomed Mater Res A; 2003 Dec; 67(3):801-12. PubMed ID: 14613228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix.
    Liu Q; de Wijn JR; van Blitterswijk CA
    J Biomed Mater Res; 1998 Jun; 40(3):490-7. PubMed ID: 9570082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Part II: fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials.
    Fan X; Case ED; Ren F; Shu Y; Baumann MJ
    J Mech Behav Biomed Mater; 2012 Apr; 8():99-110. PubMed ID: 22402157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite.
    Fang Z; Feng Q
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():190-4. PubMed ID: 24411368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive modelling of hydroxyapatite-polyethylene composite.
    Guild FJ; Bonfield W
    Biomaterials; 1993 Oct; 14(13):985-93. PubMed ID: 8286677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.