These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21316635)

  • 21. Physical and Mechanical Properties of Tilapia Scale Hydroxyapatite-Filled High-Density Polyethylene Composites.
    Aiza Jaafar CN; Zainol I; Izyan Khairani MI; Dele-Afolabi TT
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymer grafted hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties.
    Liu F; Wang R; Cheng Y; Jiang X; Zhang Q; Zhu M
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4994-5000. PubMed ID: 24094216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology.
    Wang M; Joseph R; Bonfield W
    Biomaterials; 1998 Dec; 19(24):2357-66. PubMed ID: 9884050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of particle morphology and polyethylene molecular weight on the fracture toughness of hydroxyapatite reinforced polyethylene composite.
    Eniwumide JO; Joseph R; Tanner KE
    J Mater Sci Mater Med; 2004 Oct; 15(10):1147-52. PubMed ID: 15516877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioactive composites consisting of PEEK and calcium silicate powders.
    Kim IY; Sugino A; Kikuta K; Ohtsuki C; Cho SB
    J Biomater Appl; 2009 Aug; 24(2):105-18. PubMed ID: 18757493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical evaluation of bulk material properties of dental composites using two-phase finite element models.
    Li J; Li H; Fok AS; Watts DC
    Dent Mater; 2012 Sep; 28(9):996-1003. PubMed ID: 22727356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of morphological features and surface area of hydroxyapatite on the fatigue behavior of hydroxyapatite-polyethylene composites.
    Joseph R; Tanner KE
    Biomacromolecules; 2005; 6(2):1021-6. PubMed ID: 15762673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the reinforcement morphology on the fatigue properties of hydroxyapatite reinforced polymers.
    Kane RJ; Converse GL; Roeder RK
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):261-8. PubMed ID: 19578474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).
    Lei Y; Wu Q
    Bioresour Technol; 2010 May; 101(10):3665-71. PubMed ID: 20100654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].
    Wang G; Zhu S; Tan G; Zhou K; Huang S; Zhao Y; Li Z; Huang B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):607-10. PubMed ID: 18693441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers.
    Ji J; Bar-On B; Wagner HD
    J Mech Behav Biomed Mater; 2012 Sep; 13():185-93. PubMed ID: 22906988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.
    Przekora A; Palka K; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A cross-linking model for estimating Young's modulus of artificial bone tissue grown on carbon nanotube scaffold.
    Saffar KP; Arshi AR; JamilPour N; Najafi AR; Rouhi G; Sudak L
    J Biomed Mater Res A; 2010 Aug; 94(2):594-602. PubMed ID: 20198697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructure, thermooxidation and mechanical behavior of a novel highly linear, vitamin E stabilized, UHMWPE.
    Medel FJ; Martínez-Morlanes MJ; Alonso PJ; Rubín J; Pascual FJ; Puértolas JA
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):182-8. PubMed ID: 25428060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: fabrication and mechanical characterization.
    Charles LF; Kramer ER; Shaw MT; Olson JR; Wei M
    J Mech Behav Biomed Mater; 2013 Jan; 17():269-77. PubMed ID: 23127637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Young's Modulus of Continuous and Aligned Lignocellulosic Jute and Mallow Fibers Reinforced Polyester Composites Determined Both Experimentally and from Theoretical Prediction Models.
    Ribeiro MM; Pinheiro MA; Rodrigues JDS; Ramos RPB; Corrêa AC; Monteiro SN; da Silva ACR; Candido VS
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications.
    Zhao X; Niinomi M; Nakai M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2009-16. PubMed ID: 22098900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ratcheting behavior of UHMWPE reinforced by carbon nanofibers (CNF) and hydroxyapatite (HA): Experiment and simulation.
    Wang J; Gao H; Gao L; Cui Y; Song Z
    J Mech Behav Biomed Mater; 2018 Dec; 88():176-184. PubMed ID: 30173070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications.
    Fang L; Leng Y; Gao P
    Biomaterials; 2005 Jun; 26(17):3471-8. PubMed ID: 15621236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Friction and wear properties of novel HDPE--HAp--Al2O3 biocomposites against alumina counterface.
    Bodhak S; Nath S; Basu B
    J Biomater Appl; 2009 Mar; 23(5):407-33. PubMed ID: 18667457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.