These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21316849)

  • 41. Studies on TiO(2)/ZnO photocatalysed degradation of lignin.
    Kansal SK; Singh M; Sud D
    J Hazard Mater; 2008 May; 153(1-2):412-7. PubMed ID: 17936502
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions.
    Li G; An T; Chen J; Sheng G; Fu J; Chen F; Zhang S; Zhao H
    J Hazard Mater; 2006 Nov; 138(2):392-400. PubMed ID: 16875777
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrochemical treatment of the effluent of a fine chemical manufacturing plant.
    Cañizares P; Paz R; Lobato J; Sáez C; Rodrigo MA
    J Hazard Mater; 2006 Nov; 138(1):173-81. PubMed ID: 16806682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology.
    Körbahti BK; Aktaş N; Tanyolaç A
    J Hazard Mater; 2007 Sep; 148(1-2):83-90. PubMed ID: 17374443
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of aniline degradation by Fenton and electro-Fenton processes.
    Anotai J; Lu MC; Chewpreecha P
    Water Res; 2006 May; 40(9):1841-7. PubMed ID: 16624370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical catalytic treatment of wastewater by metal ion supported on cation exchange resin.
    Wang Y; Wang B; Ma H
    J Hazard Mater; 2006 Oct; 137(3):1853-8. PubMed ID: 16793204
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH.
    Lipczynska-Kochany E; Kochany J
    Chemosphere; 2008 Oct; 73(5):745-50. PubMed ID: 18657846
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater.
    Melero JA; Martínez F; Botas JA; Molina R; Pariente MI
    Water Res; 2009 Sep; 43(16):4010-8. PubMed ID: 19447465
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrochemical removal of pentachlorophenol in a lab-scale platinum electrolyzer.
    Wu TN
    Water Sci Technol; 2010; 62(10):2313-20. PubMed ID: 21076217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study on the treatment of 2-sec-butyl-4,6-dinitrophenol (DNBP) wastewater by ClO2 in the presence of aluminum oxide as catalyst.
    Wang HL; Dong J; Jiang WF
    J Hazard Mater; 2010 Nov; 183(1-3):347-52. PubMed ID: 20685038
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chlorpyrifos and Endosulfan degradation studies in an annular slurry photo reactor.
    Sivagami K; Vikraman B; Krishna RR; Swaminathan T
    Ecotoxicol Environ Saf; 2016 Dec; 134(Pt 2):327-331. PubMed ID: 26560434
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Photochemical degradation of chlorpyrifos in water].
    Wu X; Hua R; Tang F; Li X; Cao H; Yue Y
    Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1301-4. PubMed ID: 17044511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Response and recovery of acetylcholinesterase activity in freshwater shrimp, Paratya australiensis (Decapoda: Atyidae) exposed to selected anti-cholinesterase insecticides.
    Kumar A; Doan H; Barnes M; Chapman JC; Kookana RS
    Ecotoxicol Environ Saf; 2010 Oct; 73(7):1503-10. PubMed ID: 20701973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of chlorpyrifos on the inhibition of the enzyme acetylcholinesterase by cross-linking in water-supply samples and milk from dairy cattle.
    Catalina Rodríguez D; Carvajal S; Peñuela G
    Talanta; 2013 Jul; 111():1-7. PubMed ID: 23622518
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical oxidation of textile wastewater and its reuse.
    Mohan N; Balasubramanian N; Basha CA
    J Hazard Mater; 2007 Aug; 147(1-2):644-51. PubMed ID: 17336454
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Decoloration of waste PET alcoholysis liquid by an electrochemical method.
    Li Y; Li M; Lu J; Li X; Ge M
    Water Sci Technol; 2018 Jun; 77(9-10):2463-2473. PubMed ID: 29893735
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical oxidation of 2,6-dimethylaniline by electrochemically generated Fenton's reagent.
    Masomboon N; Ratanatamskul C; Lu MC
    J Hazard Mater; 2010 Apr; 176(1-3):92-8. PubMed ID: 19963316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalyzed degradation of azo dyes under ambient conditions.
    Wu JM; Wen W
    Environ Sci Technol; 2010 Dec; 44(23):9123-7. PubMed ID: 21049925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: efficiency of horseradish peroxidase and laccase from Trametes versicolor.
    Auriol M; Filali-Meknassi Y; Adams CD; Tyagi RD; Noguerol TN; Piña B
    Chemosphere; 2008 Jan; 70(3):445-52. PubMed ID: 17897698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment.
    Moussavi G; Yazdanbakhsh A; Heidarizad M
    J Hazard Mater; 2009 Nov; 171(1-3):907-13. PubMed ID: 19616892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.