These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21316952)

  • 1. Dioxin-like polychlorinated biphenyl adsorbent obtained from enzymatic saccharification residue of lignocellulose.
    Kawashima A; Akihiro H; Morita H; Fukuoka M; Honda K; Morita M
    Bioresour Technol; 2011 Apr; 102(7):4682-7. PubMed ID: 21316952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical characteristics of carbonaceous adsorbent for dioxin-like polychlorinated biphenyl adsorption.
    Kawashima A; Katayama M; Matsumoto N; Honda K
    Chemosphere; 2011 Apr; 83(6):823-30. PubMed ID: 21435691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems.
    Schilling JS; Tewalt JP; Duncan SM
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):465-75. PubMed ID: 19343340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantum chemical modeling of the biodegradation of polychlorinated biphenyls].
    Zholdakova ZI; Kharchevnikova NV; Díachkov PN
    Gig Sanit; 1993 Sep; (9):9-12. PubMed ID: 8026795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study on the removal of dioxins and coplanar polychlorinated biphenyls (PCBS) from fish oil.
    Kawashima A; Iwakiri R; Honda K
    J Agric Food Chem; 2006 Dec; 54(26):10294-9. PubMed ID: 17177573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignocellulosic residues: biodegradation and bioconversion by fungi.
    Sánchez C
    Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods.
    Yu H; Guo G; Zhang X; Yan K; Xu C
    Bioresour Technol; 2009 Nov; 100(21):5170-5. PubMed ID: 19545999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of polychlorinated biphenyls using biofilm grown with biphenyl as carbon source in fluidized bed reactor.
    Borja JQ; Auresenia JL; Gallardo SM
    Chemosphere; 2006 Jul; 64(4):555-9. PubMed ID: 16406484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological pretreatment of softwood Pinus densiflora by three white rot fungi.
    Lee JW; Gwak KS; Park JY; Park MJ; Choi DH; Kwon M; Choi IG
    J Microbiol; 2007 Dec; 45(6):485-91. PubMed ID: 18176529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of Firmiana Simplex leaf and the enhanced Pb(II) adsorption performance: equilibrium and kinetic studies.
    Li Z; Tang X; Chen Y; Wei L; Wang Y
    J Hazard Mater; 2009 Sep; 169(1-3):386-94. PubMed ID: 19398271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin--from natural adsorbent to activated carbon: a review.
    Suhas ; Carrott PJ; Ribeiro Carrott MM
    Bioresour Technol; 2007 Sep; 98(12):2301-12. PubMed ID: 17055259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collaborative study of the recovery and gas chromatographic quantitation of polychlorinated biphenyls in chicken fat and polychlorinated biphenyl-DDT combinations in fish.
    Sawyer LD
    J Assoc Off Anal Chem; 1973 Jul; 56(4):1015-23. PubMed ID: 4205520
    [No Abstract]   [Full Text] [Related]  

  • 14. Lignin-based adsorbent-catalyst with high capacity and stability for polychlorinated aromatics removal.
    Guo H; Chen Y; Yang S; Li R; Zhang X; Dong Q; Li X; Ma X
    Bioresour Technol; 2021 Oct; 337():125453. PubMed ID: 34320738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation.
    Kuhad RC; Gupta R; Khasa YP; Singh A
    Bioresour Technol; 2010 Nov; 101(21):8348-54. PubMed ID: 20584600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key technologies for bioethanol production from lignocellulose.
    Chen H; Qiu W
    Biotechnol Adv; 2010; 28(5):556-62. PubMed ID: 20546879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of milled solid residue from cypress liquefaction in sub- and super ethanol.
    Liu HM; Liu YL
    Bioresour Technol; 2014 Jan; 151():424-7. PubMed ID: 24210649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using tea stalk lignocellulose as an adsorbent for separating decaffeinated tea catechins.
    Ye JH; Jin J; Liang HL; Lu JL; Du YY; Zheng XQ; Liang YR
    Bioresour Technol; 2009 Jan; 100(2):622-8. PubMed ID: 18710802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of cellulolytic enzyme lignin from wood preswollen/dissolved in dimethyl sulfoxide/n-methylimidazole.
    Zhang A; Lu F; Sun RC; Ralph J
    J Agric Food Chem; 2010 Mar; 58(6):3446-50. PubMed ID: 20158201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations.
    Berlin A; Balakshin M; Gilkes N; Kadla J; Maximenko V; Kubo S; Saddler J
    J Biotechnol; 2006 Sep; 125(2):198-209. PubMed ID: 16621087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.