BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21317188)

  • 1. Ranking causal variants and associated regions in genome-wide association studies by the support vector machine and random forest.
    Roshan U; Chikkagoudar S; Wei Z; Wang K; Hakonarson H
    Nucleic Acids Res; 2011 May; 39(9):e62. PubMed ID: 21317188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.
    Wang Y; Goh W; Wong L; Montana G;
    BMC Bioinformatics; 2013; 14 Suppl 16(Suppl 16):S6. PubMed ID: 24564704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of support vector machines for disease risk prediction in genome-wide association studies: concerns and opportunities.
    Mittag F; Büchel F; Saad M; Jahn A; Schulte C; Bochdanovits Z; Simón-Sánchez J; Nalls MA; Keller M; Hernandez DG; Gibbs JR; Lesage S; Brice A; Heutink P; Martinez M; Wood NW; Hardy J; Singleton AB; Zell A; Gasser T; Sharma M;
    Hum Mutat; 2012 Dec; 33(12):1708-18. PubMed ID: 22777693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of network label propagation to rank biomarkers in genome-wide Alzheimer's data.
    Stokes ME; Barmada MM; Kamboh MI; Visweswaran S
    BMC Genomics; 2014 Apr; 15():282. PubMed ID: 24731236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chi8: a GPU program for detecting significant interacting SNPs with the Chi-square 8-df test.
    Al-jouie A; Esfandiari M; Ramakrishnan S; Roshan U
    BMC Res Notes; 2015 Sep; 8():436. PubMed ID: 26369336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of type 2 diabetes-associated combination of SNPs using support vector machine.
    Ban HJ; Heo JY; Oh KS; Park KJ
    BMC Genet; 2010 Apr; 11():26. PubMed ID: 20416077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Nucleotide Polymorphism relevance learning with Random Forests for Type 2 diabetes risk prediction.
    López B; Torrent-Fontbona F; Viñas R; Fernández-Real JM
    Artif Intell Med; 2018 Apr; 85():43-49. PubMed ID: 28943335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods.
    Alves AAC; da Costa RM; Bresolin T; Fernandes Júnior GA; Espigolan R; Ribeiro AMF; Carvalheiro R; de Albuquerque LG
    J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32474602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of random forest when SNPs are in linkage disequilibrium.
    Meng YA; Yu Y; Cupples LA; Farrer LA; Lunetta KL
    BMC Bioinformatics; 2009 Mar; 10():78. PubMed ID: 19265542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNP selection in genome-wide association studies via penalized support vector machine with MAX test.
    Kim J; Sohn I; Kim DD; Jung SH
    Comput Math Methods Med; 2013; 2013():340678. PubMed ID: 24174989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle.
    Yao C; Spurlock DM; Armentano LE; Page CD; VandeHaar MJ; Bickhart DM; Weigel KA
    J Dairy Sci; 2013 Oct; 96(10):6716-29. PubMed ID: 23932129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random forests for genetic association studies.
    Goldstein BA; Polley EC; Briggs FB
    Stat Appl Genet Mol Biol; 2011; 10(1):32. PubMed ID: 22889876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SNP selection and classification of genome-wide SNP data using stratified sampling random forests.
    Wu Q; Ye Y; Liu Y; Ng MK
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):216-27. PubMed ID: 22987127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning approach to single nucleotide polymorphism-based asthma prediction.
    Gaudillo J; Rodriguez JJR; Nazareno A; Baltazar LR; Vilela J; Bulalacao R; Domingo M; Albia J
    PLoS One; 2019; 14(12):e0225574. PubMed ID: 31800601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using volcano plots and regularized-chi statistics in genetic association studies.
    Li W; Freudenberg J; Suh YJ; Yang Y
    Comput Biol Chem; 2014 Feb; 48():77-83. PubMed ID: 23602812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide prediction of discrete traits using Bayesian regressions and machine learning.
    González-Recio O; Forni S
    Genet Sel Evol; 2011 Feb; 43(1):7. PubMed ID: 21329522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximal conditional chi-square importance in random forests.
    Wang M; Chen X; Zhang H
    Bioinformatics; 2010 Mar; 26(6):831-7. PubMed ID: 20130032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.