BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 21317451)

  • 1. Targeting metabolic remodeling in glioblastoma multiforme.
    Wolf A; Agnihotri S; Guha A
    Oncotarget; 2010 Nov; 1(7):552-62. PubMed ID: 21317451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets.
    Mao H; Lebrun DG; Yang J; Zhu VF; Li M
    Cancer Invest; 2012 Jan; 30(1):48-56. PubMed ID: 22236189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions.
    Agnihotri S; Zadeh G
    Neuro Oncol; 2016 Feb; 18(2):160-72. PubMed ID: 26180081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Strategies to Discover Effective Drug Targets in Metabolic and Immune Therapy for Glioblastoma.
    Wang G; Fu XL; Wang JJ; Guan R; Tang XJ
    Curr Cancer Drug Targets; 2017; 17(1):17-39. PubMed ID: 27562399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N6-isopentenyladenosine inhibits aerobic glycolysis in glioblastoma cells by targeting PKM2 expression and activity.
    Pagano C; Coppola L; Navarra G; Avilia G; Savarese B; Torelli G; Bruzzaniti S; Piemonte E; Galgani M; Laezza C; Bifulco M
    FEBS Open Bio; 2024 May; 14(5):843-854. PubMed ID: 38514913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways.
    Kahlert UD; Mooney SM; Natsumeda M; Steiger HJ; Maciaczyk J
    Int J Cancer; 2017 Jan; 140(1):10-22. PubMed ID: 27389307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Compounds That Decrease Glioblastoma Growth and Glucose Uptake in Vitro.
    Landis CJ; Zhang S; Benavides GA; Scott SE; Li Y; Redmann M; Tran AN; Otamias A; Darley-Usmar V; Napierala M; Zhang J; Augelli-Szafran CE; Zhang W; Hjelmeland AB
    ACS Chem Biol; 2018 Aug; 13(8):2048-2057. PubMed ID: 29905460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells.
    Landis CJ; Tran AN; Scott SE; Griguer C; Hjelmeland AB
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):175-188. PubMed ID: 29378228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date.
    Bastien JI; McNeill KA; Fine HA
    Cancer; 2015 Feb; 121(4):502-16. PubMed ID: 25250735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SnapShot: glioblastoma multiforme.
    Kotliarova S; Fine HA
    Cancer Cell; 2012 May; 21(5):710-710.e1. PubMed ID: 22624719
    [No Abstract]   [Full Text] [Related]  

  • 11. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept.
    Yuen CA; Asuthkar S; Guda MR; Tsung AJ; Velpula KK
    CNS Oncol; 2016; 5(2):101-8. PubMed ID: 26997129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-capacity glycolytic and mitochondrial oxidative metabolisms mediate the growth ability of glioblastoma.
    Kim J; Han J; Jang Y; Kim SJ; Lee MJ; Ryu MJ; Kweon GR; Heo JY
    Int J Oncol; 2015 Sep; 47(3):1009-16. PubMed ID: 26202438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux.
    Mathupala SP
    Recent Pat Anticancer Drug Discov; 2011 Jan; 6(1):6-14. PubMed ID: 21110820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergetics pathways and therapeutic resistance in gliomas: emerging role of mitochondria.
    Griguer CE; Oliva CR
    Curr Pharm Des; 2011; 17(23):2421-7. PubMed ID: 21827418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Development of Glioblastoma Therapeutic Agents.
    Wang Z; Peet NP; Zhang P; Jiang Y; Rong L
    Mol Cancer Ther; 2021 Sep; 20(9):1521-1532. PubMed ID: 34172531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMOylation in Glioblastoma: A Novel Therapeutic Target.
    Fox BM; Janssen A; Estevez-Ordonez D; Gessler F; Vicario N; Chagoya G; Elsayed G; Sotoudeh H; Stetler W; Friedman GK; Bernstock JD
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 30991648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the DNA Damage Response to Overcome Cancer Drug Resistance in Glioblastoma.
    Ferri A; Stagni V; Barilà D
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32664581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes.
    Xing F; Luan Y; Cai J; Wu S; Mai J; Gu J; Zhang H; Li K; Lin Y; Xiao X; Liang J; Li Y; Chen W; Tan Y; Sheng L; Lu B; Lu W; Gao M; Qiu P; Su X; Yin W; Hu J; Chen Z; Sai K; Wang J; Chen F; Chen Y; Zhu S; Liu D; Cheng S; Xie Z; Zhu W; Yan G
    Cell Rep; 2017 Jan; 18(2):468-481. PubMed ID: 28076790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells.
    Camorani S; Crescenzi E; Colecchia D; Carpentieri A; Amoresano A; Fedele M; Chiariello M; Cerchia L
    Oncotarget; 2015 Nov; 6(35):37570-87. PubMed ID: 26461476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3.
    Shan ZN; Tian R; Zhang M; Gui ZH; Wu J; Ding M; Zhou XF; He J
    Oncotarget; 2016 Nov; 7(48):78813-78826. PubMed ID: 27705931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.