These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 21317451)
1. Targeting metabolic remodeling in glioblastoma multiforme. Wolf A; Agnihotri S; Guha A Oncotarget; 2010 Nov; 1(7):552-62. PubMed ID: 21317451 [TBL] [Abstract][Full Text] [Related]
2. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Mao H; Lebrun DG; Yang J; Zhu VF; Li M Cancer Invest; 2012 Jan; 30(1):48-56. PubMed ID: 22236189 [TBL] [Abstract][Full Text] [Related]
3. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Agnihotri S; Zadeh G Neuro Oncol; 2016 Feb; 18(2):160-72. PubMed ID: 26180081 [TBL] [Abstract][Full Text] [Related]
4. Novel Strategies to Discover Effective Drug Targets in Metabolic and Immune Therapy for Glioblastoma. Wang G; Fu XL; Wang JJ; Guan R; Tang XJ Curr Cancer Drug Targets; 2017; 17(1):17-39. PubMed ID: 27562399 [TBL] [Abstract][Full Text] [Related]
5. N6-isopentenyladenosine inhibits aerobic glycolysis in glioblastoma cells by targeting PKM2 expression and activity. Pagano C; Coppola L; Navarra G; Avilia G; Savarese B; Torelli G; Bruzzaniti S; Piemonte E; Galgani M; Laezza C; Bifulco M FEBS Open Bio; 2024 May; 14(5):843-854. PubMed ID: 38514913 [TBL] [Abstract][Full Text] [Related]
6. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways. Kahlert UD; Mooney SM; Natsumeda M; Steiger HJ; Maciaczyk J Int J Cancer; 2017 Jan; 140(1):10-22. PubMed ID: 27389307 [TBL] [Abstract][Full Text] [Related]
7. The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells. Landis CJ; Tran AN; Scott SE; Griguer C; Hjelmeland AB Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):175-188. PubMed ID: 29378228 [TBL] [Abstract][Full Text] [Related]
8. Identification of Compounds That Decrease Glioblastoma Growth and Glucose Uptake in Vitro. Landis CJ; Zhang S; Benavides GA; Scott SE; Li Y; Redmann M; Tran AN; Otamias A; Darley-Usmar V; Napierala M; Zhang J; Augelli-Szafran CE; Zhang W; Hjelmeland AB ACS Chem Biol; 2018 Aug; 13(8):2048-2057. PubMed ID: 29905460 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cortes Ballen AI; Amosu M; Ravinder S; Chan J; Derin E; Slika H; Tyler B Cells; 2024 Sep; 13(18):. PubMed ID: 39329757 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterizations of glioblastoma, targeted therapy, and clinical results to date. Bastien JI; McNeill KA; Fine HA Cancer; 2015 Feb; 121(4):502-16. PubMed ID: 25250735 [TBL] [Abstract][Full Text] [Related]
11. SnapShot: glioblastoma multiforme. Kotliarova S; Fine HA Cancer Cell; 2012 May; 21(5):710-710.e1. PubMed ID: 22624719 [No Abstract] [Full Text] [Related]
12. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept. Yuen CA; Asuthkar S; Guda MR; Tsung AJ; Velpula KK CNS Oncol; 2016; 5(2):101-8. PubMed ID: 26997129 [TBL] [Abstract][Full Text] [Related]
13. High-capacity glycolytic and mitochondrial oxidative metabolisms mediate the growth ability of glioblastoma. Kim J; Han J; Jang Y; Kim SJ; Lee MJ; Ryu MJ; Kweon GR; Heo JY Int J Oncol; 2015 Sep; 47(3):1009-16. PubMed ID: 26202438 [TBL] [Abstract][Full Text] [Related]
14. Metabolic targeting of malignant tumors: small-molecule inhibitors of bioenergetic flux. Mathupala SP Recent Pat Anticancer Drug Discov; 2011 Jan; 6(1):6-14. PubMed ID: 21110820 [TBL] [Abstract][Full Text] [Related]
15. Bioenergetics pathways and therapeutic resistance in gliomas: emerging role of mitochondria. Griguer CE; Oliva CR Curr Pharm Des; 2011; 17(23):2421-7. PubMed ID: 21827418 [TBL] [Abstract][Full Text] [Related]
16. Current Development of Glioblastoma Therapeutic Agents. Wang Z; Peet NP; Zhang P; Jiang Y; Rong L Mol Cancer Ther; 2021 Sep; 20(9):1521-1532. PubMed ID: 34172531 [TBL] [Abstract][Full Text] [Related]
18. The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes. Xing F; Luan Y; Cai J; Wu S; Mai J; Gu J; Zhang H; Li K; Lin Y; Xiao X; Liang J; Li Y; Chen W; Tan Y; Sheng L; Lu B; Lu W; Gao M; Qiu P; Su X; Yin W; Hu J; Chen Z; Sai K; Wang J; Chen F; Chen Y; Zhu S; Liu D; Cheng S; Xie Z; Zhu W; Yan G Cell Rep; 2017 Jan; 18(2):468-481. PubMed ID: 28076790 [TBL] [Abstract][Full Text] [Related]
19. Aptamer targeting EGFRvIII mutant hampers its constitutive autophosphorylation and affects migration, invasion and proliferation of glioblastoma cells. Camorani S; Crescenzi E; Colecchia D; Carpentieri A; Amoresano A; Fedele M; Chiariello M; Cerchia L Oncotarget; 2015 Nov; 6(35):37570-87. PubMed ID: 26461476 [TBL] [Abstract][Full Text] [Related]
20. miR128-1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3. Shan ZN; Tian R; Zhang M; Gui ZH; Wu J; Ding M; Zhou XF; He J Oncotarget; 2016 Nov; 7(48):78813-78826. PubMed ID: 27705931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]